addresses in memory. In some cases this register is defined by a processor's "application binary interface" (ABI). When this macro is defined, RTL is generated for this register once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this register must be fixed when in use (e.g. when `flag_pic' is true). -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. -- Macro: LEGITIMATE_PIC_OPERAND_P (X) A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent code. You can assume that X satisfies `CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all constants (including `SYMBOL_REF') can be immediate operands when generating position independent code.  File: gccint.info, Node: Assembler Format, Next: Debugging Info, Prev: PIC, Up: Target Macros 15.21 Defining the Output Assembler Language ============================================ This section describes macros whose principal purpose is to describe how to write instructions in assembler language--rather than what the instructions do. * Menu: * File Framework:: Structural information for the assembler file. * Data Output:: Output of constants (numbers, strings, addresses). * Uninitialized Data:: Output of uninitialized variables. * Label Output:: Output and generation of labels. * Initialization:: General principles of initialization and termination routines. * Macros for Initialization:: Specific macros that control the handling of initialization and termination routines. * Instruction Output:: Output of actual instructions. * Dispatch Tables:: Output of jump tables. * Exception Region Output:: Output of exception region code. * Alignment Output:: Pseudo ops for alignment and skipping data.  File: gccint.info, Node: File Framework, Next: Data Output, Up: Assembler Format 15.21.1 The Overall Framework of an Assembler File -------------------------------------------------- This describes the overall framework of an assembly file. -- Target Hook: void TARGET_ASM_FILE_START () Output to `asm_out_file' any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's assembler is quite unusual, if you override the default, you should call `default_file_start' at some point in your target hook. This lets other target files rely on these variables. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF If this flag is true, the text of the macro `ASM_APP_OFF' will be printed as the very first line in the assembly file, unless `-fverbose-asm' is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal definition of `ASM_APP_OFF', the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster. The default is false. You should not set it to true unless you have verified that your port does not generate any extra whitespace or comments that will cause GAS to issue errors in NO_APP mode. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE If this flag is true, `output_file_directive' will be called for the primary source file, immediately after printing `ASM_APP_OFF' (if that is enabled). Most ELF assemblers expect this to be done. The default is false. -- Target Hook: void TARGET_ASM_FILE_END () Output to `asm_out_file' any text which the assembler expects to find at the end of a file. The default is to output nothing. -- Function: void file_end_indicate_exec_stack () Some systems use a common convention, the `.note.GNU-stack' special section, to indicate whether or not an object file relies on the stack being executable. If your system uses this convention, you should define `TARGET_ASM_FILE_END' to this function. If you need to do other things in that hook, have your hook function call this function. -- Macro: ASM_COMMENT_START A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line. -- Macro: ASM_APP_ON A C string constant for text to be output before each `asm' statement or group of consecutive ones. Normally this is `"#APP"', which is a comment that has no effect on most assemblers but tells the GNU assembler that it must check the lines that follow for all valid assembler constructs. -- Macro: ASM_APP_OFF A C string constant for text to be output after each `asm' statement or group of consecutive ones. Normally this is `"#NO_APP"', which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output. -- Macro: ASM_OUTPUT_SOURCE_FILENAME (STREAM, NAME) A C statement to output COFF information or DWARF debugging information which indicates that filename NAME is the current source file to the stdio stream STREAM. This macro need not be defined if the standard form of output for the file format in use is appropriate. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING) A C statement to output the string STRING to the stdio stream STREAM. If you do not call the function `output_quoted_string' in your config files, GCC will only call it to output filenames to the assembler source. So you can use it to canonicalize the format of the filename using this macro. -- Macro: ASM_OUTPUT_IDENT (STREAM, STRING) A C statement to output something to the assembler file to handle a `#ident' directive containing the text STRING. If this macro is not defined, nothing is output for a `#ident' directive. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME, unsigned int FLAGS, unsigned int ALIGN) Output assembly directives to switch to section NAME. The section should have attributes as specified by FLAGS, which is a bit mask of the `SECTION_*' flags defined in `output.h'. If ALIGN is nonzero, it contains an alignment in bytes to be used for the section, otherwise some target default should be used. Only targets that must specify an alignment within the section directive need pay attention to ALIGN - we will still use `ASM_OUTPUT_ALIGN'. -- Target Hook: bool TARGET_HAVE_NAMED_SECTIONS This flag is true if the target supports `TARGET_ASM_NAMED_SECTION'. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS This flag is true if we can create zeroed data by switching to a BSS section and then using `ASM_OUTPUT_SKIP' to allocate the space. This is true on most ELF targets. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL, const char *NAME, int RELOC) Choose a set of section attributes for use by `TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. DECL may be null, in which case read-write data should be assumed. The default version of this function handles choosing code vs data, read-only vs read-write data, and `flag_pic'. You should only need to override this if your target has special flags that might be set via `__attribute__'. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type TYPE, const char * TEXT) Provides the target with the ability to record the gcc command line switches that have been passed to the compiler, and options that are enabled. The TYPE argument specifies what is being recorded. It can take the following values: `SWITCH_TYPE_PASSED' TEXT is a command line switch that has been set by the user. `SWITCH_TYPE_ENABLED' TEXT is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the `-O2' switch enables various different individual optimization passes. `SWITCH_TYPE_DESCRIPTIVE' TEXT is either NULL or some descriptive text which should be ignored. If TEXT is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL, the warning is for start up and the second time the warning is for wind down. This feature is to allow the target hook to make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches. `SWITCH_TYPE_LINE_START' This option can be ignored by this target hook. `SWITCH_TYPE_LINE_END' This option can be ignored by this target hook. The hook's return value must be zero. Other return values may be supported in the future. By default this hook is set to NULL, but an example implementation is provided for ELF based targets. Called ELF_RECORD_GCC_SWITCHES, it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the `TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION This is the name of the section that will be created by the example ELF implementation of the `TARGET_ASM_RECORD_GCC_SWITCHES' target hook.  File: gccint.info, Node: Data Output, Next: Uninitialized Data, Prev: File Framework, Up: Assembler Format 15.21.2 Output of Data ---------------------- -- Target Hook: const char * TARGET_ASM_BYTE_OP -- Target Hook: const char * TARGET_ASM_ALIGNED_HI_OP -- Target Hook: const char * TARGET_ASM_ALIGNED_SI_OP -- Target Hook: const char * TARGET_ASM_ALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_ALIGNED_TI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_HI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_SI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP These hooks specify assembly directives for creating certain kinds of integer object. The `TARGET_ASM_BYTE_OP' directive creates a byte-sized object, the `TARGET_ASM_ALIGNED_HI_OP' one creates an aligned two-byte object, and so on. Any of the hooks may be `NULL', indicating that no suitable directive is available. The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, the string should contain a tab, a pseudo-op, and then another tab. -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int ALIGNED_P) The `assemble_integer' function uses this hook to output an integer object. X is the object's value, SIZE is its size in bytes and ALIGNED_P indicates whether it is aligned. The function should return `true' if it was able to output the object. If it returns false, `assemble_integer' will try to split the object into smaller parts. The default implementation of this hook will use the `TARGET_ASM_BYTE_OP' family of strings, returning `false' when the relevant string is `NULL'. -- Macro: OUTPUT_ADDR_CONST_EXTRA (STREAM, X, FAIL) A C statement to recognize RTX patterns that `output_addr_const' can't deal with, and output assembly code to STREAM corresponding to the pattern X. This may be used to allow machine-dependent `UNSPEC's to appear within constants. If `OUTPUT_ADDR_CONST_EXTRA' fails to recognize a pattern, it must `goto fail', so that a standard error message is printed. If it prints an error message itself, by calling, for example, `output_operand_lossage', it may just complete normally. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN) A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes at PTR. PTR will be a C expression of type `char *' and LEN a C expression of type `int'. If the assembler has a `.ascii' pseudo-op as found in the Berkeley Unix assembler, do not define the macro `ASM_OUTPUT_ASCII'. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N) A C statement to output word N of a function descriptor for DECL. This must be defined if `TARGET_VTABLE_USES_DESCRIPTORS' is defined, and is otherwise unused. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the constant pool for a function before the code for the function, or a zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function. -- Macro: ASM_OUTPUT_POOL_PROLOGUE (FILE, FUNNAME, FUNDECL, SIZE) A C statement to output assembler commands to define the start of the constant pool for a function. FUNNAME is a string giving the name of the function. Should the return type of the function be required, it can be obtained via FUNDECL. SIZE is the size, in bytes, of the constant pool that will be written immediately after this call. If no constant-pool prefix is required, the usual case, this macro need not be defined. -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO, JUMPTO) A C statement (with or without semicolon) to output a constant in the constant pool, if it needs special treatment. (This macro need not do anything for RTL expressions that can be output normally.) The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to output, and MODE is the machine mode (in case X is a `const_int'). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment. The argument LABELNO is a number to use in an internal label for the address of this pool entry. The definition of this macro is responsible for outputting the label definition at the proper place. Here is how to do this: `(*targetm.asm_out.internal_label)' (FILE, "LC", LABELNO); When you output a pool entry specially, you should end with a `goto' to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner. You need not define this macro if it would do nothing. -- Macro: ASM_OUTPUT_POOL_EPILOGUE (FILE FUNNAME FUNDECL SIZE) A C statement to output assembler commands to at the end of the constant pool for a function. FUNNAME is a string giving the name of the function. Should the return type of the function be required, you can obtain it via FUNDECL. SIZE is the size, in bytes, of the constant pool that GCC wrote immediately before this call. If no constant-pool epilogue is required, the usual case, you need not define this macro. -- Macro: IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR) Define this macro as a C expression which is nonzero if C is used as a logical line separator by the assembler. STR points to the position in the string where C was found; this can be used if a line separator uses multiple characters. If you do not define this macro, the default is that only the character `;' is treated as a logical line separator. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN These target hooks are C string constants, describing the syntax in the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers. These macros are provided by `real.h' for writing the definitions of `ASM_OUTPUT_DOUBLE' and the like: -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_LONG_DOUBLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L) These translate X, of type `REAL_VALUE_TYPE', to the target's floating point representation, and store its bit pattern in the variable L. For `REAL_VALUE_TO_TARGET_SINGLE' and `REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple `long int'. For the others, it should be an array of `long int'. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in each `long int' array element. Each array element holds 32 bits of the result, even if `long int' is wider than 32 bits on the host machine. The array element values are designed so that you can print them out using `fprintf' in the order they should appear in the target machine's memory.  File: gccint.info, Node: Uninitialized Data, Next: Label Output, Prev: Data Output, Up: Assembler Format 15.21.3 Output of Uninitialized Variables ----------------------------------------- Each of the macros in this section is used to do the whole job of outputting a single uninitialized variable. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED) A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized common global variables are output. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) Like `ASM_OUTPUT_COMMON' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of `ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) Like `ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable to be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it in place of both `ASM_OUTPUT_COMMON' and `ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to see the variable's decl in order to chose what to output. -- Macro: ASM_OUTPUT_BSS (STREAM, DECL, NAME, SIZE, ROUNDED) A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of uninitialized global DECL named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants. Try to use function `asm_output_bss' defined in `varasm.c' when defining this macro. If unable, use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. There are two ways of handling global BSS. One is to define either this macro or its aligned counterpart, `ASM_OUTPUT_ALIGNED_BSS'. The other is to have `TARGET_ASM_SELECT_SECTION' return a switchable BSS section (*note TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do both. Some languages do not have `common' data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT) Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when defining this macro. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED) A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a local-common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized static variables are output. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT) Like `ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it in place of both `ASM_OUTPUT_DECL' and `ASM_OUTPUT_ALIGNED_DECL'. Define this macro when you need to see the variable's decl in order to chose what to output.  File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format 15.21.4 Output and Generation of Labels --------------------------------------- This is about outputting labels. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a label named NAME. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems. -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME) Identical to `ASM_OUTPUT_LABEL', except that NAME is known to refer to a compiler-generated label. The default definition uses `assemble_name_raw', which is like `assemble_name' except that it is more efficient. -- Macro: SIZE_ASM_OP A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems that use ELF, the default (in `config/elfos.h') is `"\t.size\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default definitions of `ASM_OUTPUT_SIZE_DIRECTIVE' and `ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE) A C statement (sans semicolon) to output to the stdio stream STREAM a directive telling the assembler that the size of the symbol NAME is SIZE. SIZE is a `HOST_WIDE_INT'. If you define `SIZE_ASM_OP', a default definition of this macro is provided. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM a directive telling the assembler to calculate the size of the symbol NAME by subtracting its address from the current address. If you define `SIZE_ASM_OP', a default definition of this macro is provided. The default assumes that the assembler recognizes a special `.' symbol as referring to the current address, and can calculate the difference between this and another symbol. If your assembler does not recognize `.' or cannot do calculations with it, you will need to redefine `ASM_OUTPUT_MEASURED_SIZE' to use some other technique. -- Macro: TYPE_ASM_OP A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems that use ELF, the default (in `config/elfos.h') is `"\t.type\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: TYPE_OPERAND_FMT A C string which specifies (using `printf' syntax) the format of the second operand to `TYPE_ASM_OP'. On systems that use ELF, the default (in `config/elfos.h') is `"@%s"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE) A C statement (sans semicolon) to output to the stdio stream STREAM a directive telling the assembler that the type of the symbol NAME is TYPE. TYPE is a C string; currently, that string is always either `"function"' or `"object"', but you should not count on this. If you define `TYPE_ASM_OP' and `TYPE_OPERAND_FMT', a default definition of this macro is provided. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name NAME of a function which is being defined. This macro is responsible for outputting the label definition (perhaps using `ASM_OUTPUT_LABEL'). The argument DECL is the `FUNCTION_DECL' tree node representing the function. If this macro is not defined, then the function name is defined in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the size of a function which is being defined. The argument NAME is the name of the function. The argument DECL is the `FUNCTION_DECL' tree node representing the function. If this macro is not defined, then the function size is not defined. You may wish to use `ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name NAME of an initialized variable which is being defined. This macro must output the label definition (perhaps using `ASM_OUTPUT_LABEL'). The argument DECL is the `VAR_DECL' tree node representing the variable. If this macro is not defined, then the variable name is defined in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' and/or `ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_CONSTANT_NAME (STREAM, NAME, EXP, SIZE) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name NAME of a constant which is being defined. This macro is responsible for outputting the label definition (perhaps using `ASM_OUTPUT_LABEL'). The argument EXP is the value of the constant, and SIZE is the size of the constant in bytes. NAME will be an internal label. If this macro is not defined, then the NAME is defined in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for claiming a register REGNO for a global variable DECL with name NAME. If you don't define this macro, that is equivalent to defining it to do nothing. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND) A C statement (sans semicolon) to finish up declaring a variable name once the compiler has processed its initializer fully and thus has had a chance to determine the size of an array when controlled by an initializer. This is used on systems where it's necessary to declare something about the size of the object. If you don't define this macro, that is equivalent to defining it to do nothing. You may wish to use `ASM_OUTPUT_SIZE_DIRECTIVE' and/or `ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const char *NAME) This target hook is a function to output to the stdio stream STREAM some commands that will make the label NAME global; that is, available for reference from other files. The default implementation relies on a proper definition of `GLOBAL_ASM_OP'. -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, tree DECL) This target hook is a function to output to the stdio stream STREAM some commands that will make the name associated with DECL global; that is, available for reference from other files. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other definition is available. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline. If you don't define this macro or `ASM_WEAKEN_DECL', GCC will not support weak symbols and you should not define the `SUPPORTS_WEAK' macro. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE) Combines (and replaces) the function of `ASM_WEAKEN_LABEL' and `ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function or variable decl. If VALUE is not `NULL', this C statement should output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE is `NULL', it should output commands to make NAME weak. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE) Outputs a directive that enables NAME to be used to refer to symbol VALUE with weak-symbol semantics. `decl' is the declaration of `name'. -- Macro: SUPPORTS_WEAK A C expression which evaluates to true if the target supports weak symbols. If you don't define this macro, `defaults.h' provides a default definition. If either `ASM_WEAKEN_LABEL' or `ASM_WEAKEN_DECL' is defined, the default definition is `1'; otherwise, it is `0'. Define this macro if you want to control weak symbol support with a compiler flag such as `-melf'. -- Macro: MAKE_DECL_ONE_ONLY (DECL) A C statement (sans semicolon) to mark DECL to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object file format provides support for this concept, such as the `COMDAT' section flags in the Microsoft Windows PE/COFF format, and this support requires changes to DECL, such as putting it in a separate section. -- Macro: SUPPORTS_ONE_ONLY A C expression which evaluates to true if the target supports one-only semantics. If you don't define this macro, `varasm.c' provides a default definition. If `MAKE_DECL_ONE_ONLY' is defined, the default definition is `1'; otherwise, it is `0'. Define this macro if you want to control one-only symbol support with a compiler flag, or if setting the `DECL_ONE_ONLY' flag is enough to mark a declaration to be emitted as one-only. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, const char *VISIBILITY) This target hook is a function to output to ASM_OUT_FILE some commands that will make the symbol(s) associated with DECL have hidden, protected or internal visibility as specified by VISIBILITY. -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC A C expression that evaluates to true if the target's linker expects that weak symbols do not appear in a static archive's table of contents. The default is `0'. Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would normally be weak (explicit template instantiations, and vtables for polymorphic classes with noninline key methods) will instead be nonweak. The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where linker restrictions require weak symbols to be left out of a static archive's table of contents. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name of an external symbol named NAME which is referenced in this compilation but not defined. The value of DECL is the tree node for the declaration. This macro need not be defined if it does not need to output anything. The GNU assembler and most Unix assemblers don't require anything. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF) This target hook is a function to output to ASM_OUT_FILE an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which is a `symbol_ref'. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (tree DECL) This target hook is a function to output to ASM_OUT_FILE an assembler directive to annotate used symbol. Darwin target use .no_dead_code_strip directive. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM a reference in assembler syntax to a label named NAME. This should add `_' to the front of the name, if that is customary on your operating system, as it is in most Berkeley Unix systems. This macro is used in `assemble_name'. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM) A C statement (sans semicolon) to output a reference to `SYMBOL_REF' SYM. If not defined, `assemble_name' will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by `TARGET_ENCODE_SECTION_INFO'. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF) A C statement (sans semicolon) to output a reference to BUF, the result of `ASM_GENERATE_INTERNAL_LABEL'. If not defined, `assemble_name' will be used to output the name of the symbol. This macro is not used by `output_asm_label', or the `%l' specifier that calls it; the intention is that this macro should be set when it is necessary to output a label differently when its address is being taken. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const char *PREFIX, unsigned long LABELNO) A function to output to the stdio stream STREAM a label whose name is made from the string PREFIX and the number LABELNO. It is absolutely essential that these labels be distinct from the labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels. It is desirable to exclude internal labels from the symbol table of the object file. Most assemblers have a naming convention for labels that should be excluded; on many systems, the letter `L' at the beginning of a label has this effect. You should find out what convention your system uses, and follow it. The default version of this function utilizes `ASM_GENERATE_INTERNAL_LABEL'. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM) A C statement to output to the stdio stream STREAM a debug info label whose name is made from the string PREFIX and the number NUM. This is useful for VLIW targets, where debug info labels may need to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles. If this macro is not defined, then `(*targetm.asm_out.internal_label)' will be used. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM) A C statement to store into the string STRING a label whose name is made from the string PREFIX and the number NUM. This string, when output subsequently by `assemble_name', should produce the output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX and NUM. If the string begins with `*', then `assemble_name' will output the rest of the string unchanged. It is often convenient for `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your machine description, so you should know what it does on your machine.) -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER) A C expression to assign to OUTVAR (which is a variable of type `char *') a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use `alloca' to get space for the string. The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time this macro is executed; it prevents conflicts between similarly-named internal static variables in different scopes. Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow periods or percent signs in assembler symbols; putting at least one of these between the name and the number will suffice. If this macro is not defined, a default definition will be provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE. If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME, DECL_OF_VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE. This macro will be used in preference to `ASM_OUTPUT_DEF' if it is defined and if the tree nodes are available. If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE) A C statement that evaluates to true if the assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by `ASM_OUTPUT_DEF' and `ASM_OUTPUT_DEF_FROM_DECLS'. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE is `NULL', it defines NAME as an undefined weak symbol. Define this macro if the target only supports weak aliases; define `ASM_OUTPUT_DEF' instead if possible. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) Define this macro to override the default assembler names used for Objective-C methods. The default name is a unique method number followed by the name of the class (e.g. `_1_Foo'). For methods in categories, the name of the category is also included in the assembler name (e.g. `_1_Foo_Bar'). These names are safe on most systems, but make debugging difficult since the method's selector is not present in the name. Therefore, particular systems define other ways of computing names. BUF is an expression of type `char *' which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra. The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; CAT_NAME is the name of the category (or `NULL' if the method is not in a category); and SEL_NAME is the name of the selector. On systems where the assembler can handle quoted names, you can use this macro to provide more human-readable names. -- Macro: ASM_DECLARE_CLASS_REFERENCE (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM commands to declare that the label NAME is an Objective-C class reference. This is only needed for targets whose linkers have special support for NeXT-style runtimes. -- Macro: ASM_DECLARE_UNRESOLVED_REFERENCE (STREAM, NAME) A C statement (sans semicolon) to output to the stdio stream STREAM commands to declare that the label NAME is an unresolved Objective-C class reference. This is only needed for targets whose linkers have special support for NeXT-style runtimes.  File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format 15.21.5 How Initialization Functions Are Handled ------------------------------------------------ The compiled code for certain languages includes "constructors" (also called "initialization routines")--functions to initialize data in the program when the program is started. These functions need to be called before the program is "started"--that is to say, before `main' is called. Compiling some languages generates "destructors" (also called "termination routines") that should be called when the program terminates. To make the initialization and termination functions work, the compiler must output something in the assembler code to cause those functions to be called at the appropriate time. When you port the compiler to a new system, you need to specify how to do this. There are two major ways that GCC currently supports the execution of initialization and termination functions. Each way has two variants. Much of the structure is common to all four variations. The linker must build two lists of these functions--a list of initialization functions, called `__CTOR_LIST__', and a list of termination functions, called `__DTOR_LIST__'. Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on the environment). This is followed by a series of zero or more function pointers to constructors (or destructors), followed by a function pointer containing zero. Depending on the operating system and its executable file format, either `crtstuff.c' or `libgcc2.c' traverses these lists at startup time and exit time. Constructors are called in reverse order of the list; destructors in forward order. The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. Traditionally these are called `.ctors' and `.dtors'. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates all these words into one contiguous `.ctors' section. Termination functions are handled similarly. This method will be chosen as the default by `target-def.h' if `TARGET_ASM_NAMED_SECTION' is defined. A target that does not support arbitrary sections, but does support special designated constructor and destructor sections may define `CTORS_SECTION_ASM_OP' and `DTORS_SECTION_ASM_OP' to achieve the same effect. When arbitrary sections are available, there are two variants, depending upon how the code in `crtstuff.c' is called. On systems that support a ".init" section which is executed at program startup, parts of `crtstuff.c' are compiled into that section. The program is linked by the `gcc' driver like this: ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o The prologue of a function (`__init') appears in the `.init' section of `crti.o'; the epilogue appears in `crtn.o'. Likewise for the function `__fini' in the ".fini" section. Normally these files are provided by the operating system or by the GNU C library, but are provided by GCC for a few targets. The objects `crtbegin.o' and `crtend.o' are (for most targets) compiled from `crtstuff.c'. They contain, among other things, code fragments within the `.init' and `.fini' sections that branch to routines in the `.text' section. The linker will pull all parts of a section together, which results in a complete `__init' function that invokes the routines we need at startup. To use this variant, you must define the `INIT_SECTION_ASM_OP' macro properly. If no init section is available, when GCC compiles any function called `main' (or more accurately, any function designated as a program entry point by the language front end calling `expand_main_function'), it inserts a procedure call to `__main' as the first executable code after the function prologue. The `__main' function is defined in `libgcc2.c' and runs the global constructors. In file formats that don't support arbitrary sections, there are again two variants. In the simplest variant, the GNU linker (GNU `ld') and an `a.out' format must be used. In this case, `TARGET_ASM_CONSTRUCTOR' is defined to produce a `.stabs' entry of type `N_SETT', referencing the name `__CTOR_LIST__', and with the address of the void function containing the initialization code as its value. The GNU linker recognizes this as a request to add the value to a "set"; the values are accumulated, and are eventually placed in the executable as a vector in the format described above, with a leading (ignored) count and a trailing zero element. `TARGET_ASM_DESTRUCTOR' is handled similarly. Since no init section is available, the absence of `INIT_SECTION_ASM_OP' causes the compilation of `main' to call `__main' as above, starting the initialization process. The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using file formats which the GNU linker does not support, such as `ECOFF'. In this case, `TARGET_HAVE_CTORS_DTORS' is false, initialization and termination functions are recognized simply by their names. This requires an extra program in the linkage step, called `collect2'. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called via `__main' as described above. In order to use this method, `use_collect2' must be defined in the target in `config.gcc'. The following section describes the specific macros that control and customize the handling of initialization and termination functions.  File: gccint.info, Node: Macros for Initialization, Next: Instruction Output, Prev: Initialization, Up: Assembler Format 15.21.6 Macros Controlling Initialization Routines -------------------------------------------------- Here are the macros that control how the compiler handles initialization and termination functions: -- Macro: INIT_SECTION_ASM_OP If defined, a C string constant, including spacing, for the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls how `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions. -- Macro: HAS_INIT_SECTION If defined, `main' will not call `__main' as described above. This macro should be defined for systems that control start-up code on a symbol-by-symbol basis, such as OSF/1, and should not be defined explicitly for systems that support `INIT_SECTION_ASM_OP'. -- Macro: LD_INIT_SWITCH If defined, a C string constant for a switch that tells the linker that the following symbol is an initialization routine. -- Macro: LD_FINI_SWITCH If defined, a C string constant for a switch that tells the linker that the following symbol is a finalization routine. -- Macro: COLLECT_SHARED_INIT_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is loaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit initialization function, then a function called `_GLOBAL__DI' will be generated. This function and the following one are used by collect2 when linking a shared library that needs constructors or destructors, or has DWARF2 exception tables embedded in the code. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit finalization function, then a function called `_GLOBAL__DD' will be generated. -- Macro: INVOKE__main If defined, `main' will call `__main' despite the presence of `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors. -- Macro: SUPPORTS_INIT_PRIORITY If nonzero, the C++ `init_priority' attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an error message upon encountering an `init_priority' attribute. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS This value is true if the target supports some "native" method of collecting constructors and destructors to be run at startup and exit. It is false if we must use `collect2'. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY) If defined, a function that outputs assembler code to arrange to call the function referenced by SYMBOL at initialization time. Assume that SYMBOL is a `SYMBOL_REF' for a function taking no arguments and with no return value. If the target supports initialization priorities, PRIORITY is a value between 0 and `MAX_INIT_PRIORITY'; otherwise it must be `DEFAULT_INIT_PRIORITY'. If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) the target defines `CTORS_SECTION_ASM_OP', or (3) `USE_COLLECT2' is not defined. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY) This is like `TARGET_ASM_CONSTRUCTOR' but used for termination functions rather than initialization functions. If `TARGET_HAVE_CTORS_DTORS' is true, the initialization routine generated for the generated object file will have static linkage. If your system uses `collect2' as the means of processing constructors, then that program normally uses `nm' to scan an object file for constructor functions to be called. On certain kinds of systems, you can define this macro to make `collect2' work faster (and, in some cases, make it work at all): -- Macro: OBJECT_FORMAT_COFF Define this macro if the system uses COFF (Common Object File Format) object files, so that `collect2' can assume this format and scan object files directly for dynamic constructor/destructor functions. This macro is effective only in a native compiler; `collect2' as part of a cross compiler always uses `nm' for the target machine. -- Macro: REAL_NM_FILE_NAME Define this macro as a C string constant containing the file name to use to execute `nm'. The default is to search the path normally for `nm'. If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define these macros to enable support for running initialization and termination functions in shared libraries: -- Macro: LDD_SUFFIX Define this macro to a C string constant containing the name of the program which lists dynamic dependencies, like `"ldd"' under SunOS 4. -- Macro: PARSE_LDD_OUTPUT (PTR) Define this macro to be C code that extracts filenames from the output of the program denoted by `LDD_SUFFIX'. PTR is a variable of type `char *' that points to the beginning of a line of output from `LDD_SUFFIX'. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that line. Otherwise, it must set PTR to `NULL'. -- Macro: SHLIB_SUFFIX Define this macro to a C string constant containing the default shared library extension of the target (e.g., `".so"'). `collect2' strips version information after this suffix when generating global constructor and destructor names. This define is only needed on targets that use `collect2' to process constructors and destructors.  File: gccint.info, Node: Instruction Output, Next: Dispatch Tables, Prev: Macros for Initialization, Up: Assembler Format 15.21.7 Output of Assembler Instructions ---------------------------------------- This describes assembler instruction output. -- Macro: REGISTER_NAMES A C initializer containing the assembler's names for the machine registers, each one as a C string constant. This is what translates register numbers in the compiler into assembler language. -- Macro: ADDITIONAL_REGISTER_NAMES If defined, a C initializer for an array of structures containing a name and a register number. This macro defines additional names for hard registers, thus allowing the `asm' option in declarations to refer to registers using alternate names. -- Macro: ASM_OUTPUT_OPCODE (STREAM, PTR) Define this macro if you are using an unusual assembler that requires different names for the machine instructions. The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The macro-operand PTR is a variable of type `char *' which points to the opcode name in its "internal" form--the form that is written in the machine description. The definition should output the opcode name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice. In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to process text that includes `%'-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally. If you need to look at the operand values, they can be found as the elements of `recog_data.operand'. If the macro definition does nothing, the instruction is output in the usual way. -- Macro: FINAL_PRESCAN_INSN (INSN, OPVEC, NOPERANDS) If defined, a C statement to be executed just prior to the output of assembler code for INSN, to modify the extracted operands so they will be output differently. Here the argument OPVEC is the vector containing the operands extracted from INSN, and NOPERANDS is the number of elements of the vector which contain meaningful data for this insn. The contents of this vector are what will be used to convert the insn template into assembler code, so you can change the assembler output by changing the contents of the vector. This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ought to be handled by writing conditional output routines in those patterns. If this macro is not defined, it is equivalent to a null statement. -- Macro: PRINT_OPERAND (STREAM, X, CODE) A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand X. X is an RTL expression. CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the `%' specification that was used to request printing of the operand. If the specification was just `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is the ASCII code for LTR. If X is a register, this macro should print the register's name. The names can be found in an array `reg_names' whose type is `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'. When the machine description has a specification `%PUNCT' (a `%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE) A C expression which evaluates to true if CODE is a valid punctuation character for use in the `PRINT_OPERAND' macro. If `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation characters (except for the standard one, `%') are used in this way. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X) A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand that is a memory reference whose address is X. X is an RTL expression. On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the hook `TARGET_ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and then check for it here. *Note Assembler Format::. -- Macro: DBR_OUTPUT_SEQEND (FILE) A C statement, to be executed after all slot-filler instructions have been output. If necessary, call `dbr_sequence_length' to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever. Don't define this macro if it has nothing to do, but it is helpful in reading assembly output if the extent of the delay sequence is made explicit (e.g. with white space). Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when the scheduling pass is not run, or when no slot fillers could be found.) The variable `final_sequence' is null when not processing a sequence, otherwise it contains the `sequence' rtx being output. -- Macro: REGISTER_PREFIX -- Macro: LOCAL_LABEL_PREFIX -- Macro: USER_LABEL_PREFIX -- Macro: IMMEDIATE_PREFIX If defined, C string expressions to be used for the `%R', `%L', `%U', and `%I' options of `asm_fprintf' (see `final.c'). These are useful when a single `md' file must support multiple assembler formats. In that case, the various `tm.h' files can define these macros differently. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT) If defined this macro should expand to a series of `case' statements which will be parsed inside the `switch' statement of the `asm_fprintf' function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to target specific code. The output file is given by the parameter FILE. The varargs input pointer is ARGPTR and the rest of the format string, starting the character after the one that is being switched upon, is pointed to by FORMAT. -- Macro: ASSEMBLER_DIALECT If your target supports multiple dialects of assembler language (such as different opcodes), define this macro as a C expression that gives the numeric index of the assembler language dialect to use, with zero as the first variant. If this macro is defined, you may use constructs of the form `{option0|option1|option2...}' in the output templates of patterns (*note Output Template::) or in the first argument of `asm_fprintf'. This construct outputs `option0', `option1', `option2', etc., if the value of `ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of `ASSEMBLER_DIALECT', the construct outputs nothing. If you do not define this macro, the characters `{', `|' and `}' do not have any special meaning when used in templates or operands to `asm_fprintf'. Define the macros `REGISTER_PREFIX', `LOCAL_LABEL_PREFIX',