right (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ /** @file backward/hashtable.h * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). */ #ifndef _HASHTABLE_H #define _HASHTABLE_H 1 // Hashtable class, used to implement the hashed associative containers // hash_set, hash_map, hash_multiset, and hash_multimap. #include #include #include #include #include _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx) using std::size_t; using std::ptrdiff_t; using std::forward_iterator_tag; using std::input_iterator_tag; using std::_Construct; using std::_Destroy; using std::distance; using std::vector; using std::pair; using std::__iterator_category; template struct _Hashtable_node { _Hashtable_node* _M_next; _Val _M_val; }; template > class hashtable; template struct _Hashtable_iterator; template struct _Hashtable_const_iterator; template struct _Hashtable_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _Val& reference; typedef _Val* pointer; _Node* _M_cur; _Hashtable* _M_ht; _Hashtable_iterator(_Node* __n, _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { } _Hashtable_iterator() { } reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } iterator& operator++(); iterator operator++(int); bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; } }; template struct _Hashtable_const_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val,_Key,_HashFcn, _ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef const _Val& reference; typedef const _Val* pointer; const _Node* _M_cur; const _Hashtable* _M_ht; _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { } _Hashtable_const_iterator() { } _Hashtable_const_iterator(const iterator& __it) : _M_cur(__it._M_cur), _M_ht(__it._M_ht) { } reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } const_iterator& operator++(); const_iterator operator++(int); bool operator==(const const_iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const const_iterator& __it) const { return _M_cur != __it._M_cur; } }; // Note: assumes long is at least 32 bits. enum { _S_num_primes = 28 }; static const unsigned long __stl_prime_list[_S_num_primes] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; inline unsigned long __stl_next_prime(unsigned long __n) { const unsigned long* __first = __stl_prime_list; const unsigned long* __last = __stl_prime_list + (int)_S_num_primes; const unsigned long* pos = std::lower_bound(__first, __last, __n); return pos == __last ? *(__last - 1) : *pos; } // Forward declaration of operator==. template class hashtable; template bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2); // Hashtables handle allocators a bit differently than other // containers do. If we're using standard-conforming allocators, then // a hashtable unconditionally has a member variable to hold its // allocator, even if it so happens that all instances of the // allocator type are identical. This is because, for hashtables, // this extra storage is negligible. Additionally, a base class // wouldn't serve any other purposes; it wouldn't, for example, // simplify the exception-handling code. template class hashtable { public: typedef _Key key_type; typedef _Val value_type; typedef _HashFcn hasher; typedef _EqualKey key_equal; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; hasher hash_funct() const { return _M_hash; } key_equal key_eq() const { return _M_equals; } private: typedef _Hashtable_node<_Val> _Node; public: typedef typename _Alloc::template rebind::other allocator_type; allocator_type get_allocator() const { return _M_node_allocator; } private: typedef typename _Alloc::template rebind<_Node>::other _Node_Alloc; typedef typename _Alloc::template rebind<_Node*>::other _Nodeptr_Alloc; typedef vector<_Node*, _Nodeptr_Alloc> _Vector_type; _Node_Alloc _M_node_allocator; _Node* _M_get_node() { return _M_node_allocator.allocate(1); } void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); } private: hasher _M_hash; key_equal _M_equals; _ExtractKey _M_get_key; _Vector_type _M_buckets; size_type _M_num_elements; public: typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; friend struct _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>; friend struct _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>; public: hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const _ExtractKey& __ext, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(__ext), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(_ExtractKey()), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(const hashtable& __ht) : _M_node_allocator(__ht.get_allocator()), _M_hash(__ht._M_hash), _M_equals(__ht._M_equals), _M_get_key(__ht._M_get_key), _M_buckets(__ht.get_allocator()), _M_num_elements(0) { _M_copy_from(__ht); } hashtable& operator= (const hashtable& __ht) { if (&__ht != this) { clear(); _M_hash = __ht._M_hash; _M_equals = __ht._M_equals; _M_get_key = __ht._M_get_key; _M_copy_from(__ht); } return *this; } ~hashtable() { clear(); } size_type size() const { return _M_num_elements; } size_type max_size() const { return size_type(-1); } bool empty() const { return size() == 0; } void swap(hashtable& __ht) { std::swap(_M_hash, __ht._M_hash); std::swap(_M_equals, __ht._M_equals); std::swap(_M_get_key, __ht._M_get_key); _M_buckets.swap(__ht._M_buckets); std::swap(_M_num_elements, __ht._M_num_elements); } iterator begin() { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_‹8Œ88Ž888‘8’8“8”8•8–8—8˜8™8š8›8œ88ž8Ÿ8M_buckets[__n]) return iterator(_M_buckets[__n], this); return end(); } iterator end() { return iterator(0, this); } const_iterator begin() const { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return const_iterator(_M_buckets[__n], this); return end(); } const_iterator end() const { return const_iterator(0, this); } template friend bool operator==(const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&, const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&); public: size_type bucket_count() const { return _M_buckets.size(); } size_type max_bucket_count() const { return __stl_prime_list[(int)_S_num_primes - 1]; } size_type elems_in_bucket(size_type __bucket) const { size_type __result = 0; for (_Node* __n = _M_buckets[__bucket]; __n; __n = __n->_M_next) __result += 1; return __result; } pair insert_unique(const value_type& __obj) { resize(_M_num_elements + 1); return insert_unique_noresize(__obj); } iterator insert_equal(const value_type& __obj) { resize(_M_num_elements + 1); return insert_equal_noresize(__obj); } pair insert_unique_noresize(const value_type& __obj); iterator insert_equal_noresize(const value_type& __obj); template void insert_unique(_InputIterator __f, _InputIterator __l) { insert_unique(__f, __l, __iterator_category(__f)); } template void insert_equal(_InputIterator __f, _InputIterator __l) { insert_equal(__f, __l, __iterator_category(__f)); } template void insert_unique(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_unique(*__f); } template void insert_equal(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_equal(*__f); } template void insert_unique(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } template void insert_equal(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } reference find_or_insert(const value_type& __obj); iterator find(const key_type& __key) { size_type __n = _M_bkt_num_key(__key); _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return iterator(__first, this); } const_iterator find(const key_type& __key) const { size_type __n = _M_bkt_num_key(__key); const _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return const_iterator(__first, this); } size_type count(const key_type& __key) const { const size_type __n = _M_bkt_num_key(__key); size_type __result = 0; for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), __key)) ++__result; return __result; } pair equal_range(const key_type& __key); pair equal_range(const key_type& __key) const; size_type erase(const key_type& __key); void erase(const iterator& __it); void erase(iterator __first, iterator __last); void erase(const const_iterator& __it); void erase(const_iterator __first, const_iterator __last); void resize(size_type __num_elements_hint); void clear(); private: size_type _M_next_size(size_type __n) const { return __stl_next_prime(__n); } void _M_initialize_buckets(size_type __n) { const size_type __n_buckets = _M_next_size(__n); _M_buckets.reserve(__n_buckets); _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0); _M_num_elements = 0; } size_type _M_bkt_num_key(const key_type& __key) const { return _M_bkt_num_key(__key, _M_buckets.size()); } size_type _M_bkt_num(const value_type& __obj) const { return _M_bkt_num_key(_M_get_key(__obj)); } size_type _M_bkt_num_key(const key_type& __key, size_t __n) const { return _M_hash(__key) % __n; } size_type _M_bkt_num(const value_type& __obj, size_t __n) const { return _M_bkt_num_key(_M_get_key(__obj), __n); } _Node* _M_new_node(const value_type& __obj) { _Node* __n = _M_get_node(); __n->_M_next = 0; try { this->get_allocator().construct(&__n->_M_val, __obj); return __n; } catch(...) { _M_put_node(__n); __throw_exception_again; } } void _M_delete_node(_Node* __n) { this->get_allocator().destroy(&__n->_M_val); _M_put_node(__n); } void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last); void _M_erase_bucket(const size_type __n, _Node* __last); void _M_copy_from(const hashtable& __ht); }; template _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template inline _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { iterator __tmp = *this; ++*this; return __tmp; } template _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template inline _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { const_iterator __tmp = *this; ++*this; return __tmp; } template bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { typedef typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_Node _Node; if (__ht1._M_buckets.size() != __ht2._M_buckets.size()) return false; for (size_t __n = 0; __n < __ht1._M_buckets.size(); ++__n) { _Node* __cur1 = __ht1._M_buckets[__n]; _Node* __cur2 = __ht2._M_buckets[__n]; // Check same length of lists for (; __cur1 && __cur2; __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) { } if (__cur1 || __cur2) return false; // Now check one's elements are in the other for (__cur1 = __ht1._M_buckets[__n] ; __cur1; __cur1 = __cur1->_M_next) { bool _found__cur1 = false; for (__cur2 = __ht2._M_buckets[__n]; __cur2; __cur2 = __cur2->_M_next) { if (__cur1->_M_val == __cur2->_M_val) { _found__cur1 = true; break; } } if (!_found__cur1) return false; } } return true; } template inline bool operator!=(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { return !(__ht1 == __ht2); } template inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1, hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) { __ht1.swap(__ht2); } template pair::iterator, bool> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_unique_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return pair(iterator(__cur, this), false); _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return pair(iterator(__tmp, this), true); } template typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_equal_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __cur->_M_next; __cur->_M_next = __tmp; ++_M_num_elements; return iterator(__tmp, this); } _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return iterator(__tmp, this); } template typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::reference hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: find_or_insert(const value_type& __obj) { resize(_M_num_elements + 1); size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return __cur->_M_val; _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return __tmp->_M_val; } template pair::iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) { typedef pair _Pii; const size_type __n = _M_bkt_num_key(__key); for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(iterator(__first, this), iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(iterator(__first, this), iterator(_M_buckets[__m], this)); return _Pii(iterator(__first, this), end()); } return _Pii(end(), end()); } template pair::const_iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) const { typedef pair _Pii; const size_type __n = _M_bkt_num_key(__key); for (const _Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) { if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (const _Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(const_iterator(__first, this), const_iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(const_iterator(__first, this), const_iterator(_M_buckets[__m], this)); return _Pii(const_iterator(__first, this), end()); } } return _Pii(end(), end()); } template typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::size_type hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const key_type& __key) { const size_type __n = _M_bkt_num_key(__key); _Node* __first = _M_buckets[__n]; size_type __erased = 0; if (__first) { _Node* __cur = __first; _Node* __next = __cur->_M_next; while (__next) { if (_M_equals(_M_get_key(__next->_M_val), __key)) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; ++__erased; --_M_num_elements; } else { __cur = __next; __next = __cur->_M_next; } } if (_M_equals(_M_get_key(__first->_M_val), __key)) { _M_buckets[__n] = __first->_M_next; _M_delete_node(__first); ++__erased; --_M_num_elements; } } return __erased; } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const iterator& __it) { _Node* __p = __it._M_cur; if (__p) { const size_type __n = _M_bkt_num(__p->_M_val); _Node* __cur = _M_buckets[__n]; if (__cur == __p) { _M_buckets[__n] = __cur->_M_next; _M_delete_node(__cur); --_M_num_elements; } else { _Node* __next = __cur->_M_next; while (__next) { if (__next == __p) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); --_M_num_elements; break; } else { __cur = __next; __next = __cur->_M_next; } } } } } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(iterator __first, iterator __last) { size_type __f_bucket = __first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size(); size_type __l_bucket = __last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size(); if (__first._M_cur == __last._M_cur) return; else if (__f_bucket == __l_bucket) _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur); else { _M_erase_bucket(__f_bucket, __first._M_cur, 0); for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n) _M_erase_bucket(__n, 0); if (__l_bucket != _M_buckets.size()) _M_erase_bucket(__l_bucket, __last._M_cur); } } template inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const_iterator __first, const_iterator __last) { erase(iterator(const_cast<_Node*>(__first._M_cur), const_cast(__first._M_ht)), iterator(const_cast<_Node*>(__last._M_cur), const_cast(__last._M_ht))); } template inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const const_iterator& __it) { erase(iterator(const_cast<_Node*>(__it._M_cur), const_cast(__it._M_ht))); } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: resize(size_type __num_elements_hint) { const size_type __old_n = _M_buckets.size(); if (__num_elements_hint > __old_n) { const size_type __n = _M_next_size(__num_elements_hint); if (__n > __old_n) { _Vector_type __tmp(__n, (_Node*)(0), _M_buckets.get_allocator()); try { for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) { _Node* __first = _M_buckets[__bucket]; while (__first) { size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); _M_buckets[__bucket] = __first->_M_next; __first->_M_next = __tmp[__new_bucket]; __tmp[__new_bucket] = __first; __first = _M_buckets[__bucket]; } } _M_buckets.swap(__tmp); } catch(...) { for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) { while (__tmp[__bucket]) { _Node* __next = __tmp[__bucket]->_M_next; _M_delete_node(__tmp[__bucket]); __tmp[__bucket] = __next; } } __throw_exception_again; } } } } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last) { _Node* __cur = _M_buckets[__n]; if (__cur == __first) _M_erase_bucket(__n, __last); else { _Node* __next; for (__next = __cur->_M_next; __next != __first; __cur = __next, __next = __cur->_M_next) ; while (__next != __last) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; --_M_num_elements; } } } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __last) { _Node* __cur = _M_buckets[__n]; while (__cur != __last) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; _M_buckets[__n] = __cur; --_M_num_elements; } } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: clear() { for (size_type __i = 0; __i < _M_buckets.size(); ++__i) { _Node* __cur = _M_buckets[__i]; while (__cur != 0) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; } _M_buckets[__i] = 0; } _M_num_elements = 0; } template void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_copy_from(const hashtable& __ht) { _M_buckets.clear(); _M_buckets.reserve(__ht._M_buckets.size()); _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0); try { for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) { const _Node* __cur = __ht._M_buckets[__i]; if (__cur) { _Node* __local_copy = _M_new_node(__cur->_M_val); _M_buckets[__i] = __local_copy; for (_Node* __next = __cur->_M_next; __next; __cur = __next, __next = __cur->_M_next) { __local_copy->_M_next = _M_new_node(__next->_M_val); __local_copy = __local_copy->_M_next; } } } _M_num_elements = __ht._M_num_elements; } catch(...) { clear(); __throw_exception_again; } } _GLIBCXX_END_NAMESPACE #endif // Backward-compat support -*- C++ -*- // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ // WARNING: The classes defined in this header are DEPRECATED. This // header is defined in section D.7.1 of the C++ standard, and it // MAY BE REMOVED in a future standard revision. One should use the // header instead. #ifndef _GLIBCXX_STRSTREAM #define _GLIBCXX_STRSTREAM #include "backward_warning.h" #include #include #include #include #include _GLIBCXX_BEGIN_NAMESPACE(std) // Class strstreambuf, a streambuf class that manages an array of char. // Note that this class is not a template. class strstreambuf : public basic_streambuf > { public: // Types. typedef char_traits _Traits; typedef basic_streambuf _Base; public: // Constructor, destructor explicit strstreambuf(streamsize __initial_capacity = 0); strstreambuf(void* (*__alloc)(size_t), void (*__free)(void*)); strstreambuf(char* __get, streamsize __n, char* __put = 0); strstreambuf(signed char* __get, streamsize __n, signed char* __put = 0); strstreambuf(unsigned char* __get, streamsize __n, unsigned char* __put=0); strstreambuf(const char* __get, streamsize __n); strstreambuf(const signed char* __get, streamsize __n); strstreambuf(const unsigned char* __get, streamsize __n); virtual ~strstreambuf(); public: void freeze(bool = true); char* str(); int pcount() const; protected: virtual int_type overflow(int_type __c = _Traits::eof()); virtual int_type pbackfail(int_type __c = _Traits::eof()); virtual int_type underflow(); virtual _Base* setbuf(char* __buf, streamsize __n); virtual pos_type seekoff(off_type __off, ios_base::seekdir __dir, ios_base::openmode __mode = ios_base::in | ios_base::out); virtual pos_type seekpos(pos_type __pos, ios_base::openmode __mode = ios_base::in | ios_base::out); private: strstreambuf& operator=(const strstreambuf&); strstreambuf(const strstreambuf&); // Dynamic allocation, possibly using _M_alloc_fun and _M_free_fun. char* _M_alloc(size_t); void _M_free(char*); // Helper function used in constructors. void _M_setup(char* __get, char* __put, streamsize __n); private: // Data members. void* (*_M_alloc_fun)(size_t); void (*_M_free_fun)(void*); bool _M_dynamic : 1; bool _M_frozen : 1; bool _M_constant : 1; }; // Class istrstream, an istream that manages a strstreambuf. class istrstream : public basic_istream { public: explicit istrstream(char*); explicit istrstream(const char*); istrstream(char* , streamsize); istrstream(const char*, streamsize); virtual ~istrstream(); strstreambuf* rdbuf() const; char* str(); private: strstreambuf _M_buf; }; // Class ostrstream class ostrstream : public basic_ostream { public: ostrstream(); ostrstream(char*, int, ios_base::openmode = ios_base::out); virtual ~ostrstream(); strstreambuf* rdbuf() const; void freeze(bool = true); char* str(); int pcount() const; private: strstreambuf _M_buf; }; // Class strstream class strstream : public basic_iostream { public: typedef char char_type; typedef char_traits::int_type int_type; typedef char_traits::pos_type pos_type; typedef char_traits::off_type off_type; strstream(); strstream(char*, int, ios_base::openmode = ios_base::in | ios_base::out); virtual ~strstream(); strstreambuf* rdbuf() const; void freeze(bool = true); int pcount() const; char* str(); private: strstreambuf _M_buf; }; _GLIBCXX_END_NAMESPACE #endif // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. #ifndef _BACKWARD_BACKWARD_WARNING_H #define _BACKWARD_BACKWARD_WARNING_H 1 #ifdef __DEPRECATED #warning \ This file includes at least one deprecated or antiquated header which \ may be removed without further notice at a future date. Please use a \ non-deprecated interface with equivalent functionality instead. For a \ listing of replacement headers and interfaces, consult the file \ backward_warning.h. To disable this warning use -Wno-deprecated. /* A list of valid replacements is as follows: Use: Instead of: , basic_stringbuf , strstreambuf , basic_istringstream , istrstream , basic_ostringstream , ostrstream , basic_stringstream , strstream , unordered_set , hash_set , unordered_multiset , hash_multiset , unordered_map , hash_map , unordered_multimap , hash_multimap , bind , binder1st , bind , binder2nd , bind , bind1st , bind , bind2nd , unique_ptr , auto_ptr */ #endif #endif // 'struct hash' from SGI -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ /** @file backward/hash_fun.h * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). */ #ifndef _HASH_FUN_H #define _HASH_FUN_H 1 #include _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx) using std::size_t; template struct hash { }; inline size_t __stl_hash_string(const char* __s) { unsigned long __h = 0; for ( ; *__s; ++__s) __h = 5 * __h + *__s; return size_t(__h); } template<> struct hash { size_t operator()(const char* __s) const { return __stl_hash_string(__s); } }; template<> struct hash { size_t operator()(const char* __s) const { return __stl_hash_string(__s); } }; template<> struct hash { size_t operator()(char __x) const { return __x; } }; template<> struct hash { size_t operator()(unsigned char __x) const { return __x; } }; template<> struct hash { size_t operator()(unsigned char __x) const { return __x; } }; template<> struct hash { size_t operator()(short __x) const { return __x; } }; template<> struct hash { size_t operator()(unsigned short __x) const { return __x; } }; template<> struct hash { size_t operator()(int __x) const { return __x; } }; template<> struct hash { size_t operator()(unsigned int __x) const { return __x; } }; template<> struct hash { size_t operator()(long __x) const { return __x; } }; template<> struct hash { size_t operator()(unsigned long __x) const { return __x; } }; _GLIBCXX_END_NAMESPACE #endif // auto_ptr implementation -*- C++ -*- // Copyright (C) 2007, 2008 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this library; see the file COPYING. If not, write to // the Free Software Foundation, 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301, USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file backward/auto_ptr.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _STL_AUTO_PTR_H #define _STL_AUTO_PTR_H 1 #include #include _GLIBCXX_BEGIN_NAMESPACE(std) /** * A wrapper class to provide auto_ptr with reference semantics. * For example, an auto_ptr can be assigned (or constructed from) * the result of a function which returns an auto_ptr by value. * * All the auto_ptr_ref stuff should happen behind the scenes. */ template struct auto_ptr_ref { _Tp1* _M_ptr; explicit auto_ptr_ref(_Tp1* __p): _M_ptr(__p) { } } _GLIBCXX_DEPRECATED_ATTR; /** * @brief A simple smart pointer providing strict ownership semantics. * * The Standard says: *
   *  An @c auto_ptr owns the object it holds a pointer to.  Copying
   *  an @c auto_ptr copies the pointer and transfers ownership to the
   *  destination.  If more than one @c auto_ptr owns the same object
   *  at the same time the behavior of the program is undefined.
   *
   *  The uses of @c auto_ptr include providing temporary
   *  exception-safety for dynamically allocated memory, passing
   *  ownership of dynamically allocated memory to a function, and
   *  returning dynamically allocated memory from a function.  @c
   *  auto_ptr does not meet the CopyConstructible and Assignable
   *  requirements for Standard Library container elements and thus
   *  instantiating a Standard Library container with an @c auto_ptr
   *  results in undefined behavior.
   *  
* Quoted from [20.4.5]/3. * * Good examples of what can and cannot be done with auto_ptr can * be found in the libstdc++ testsuite. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * 127. auto_ptr<> conversion issues * These resolutions have all been incorporated. */ template class auto_ptr { private: _Tp* _M_ptr; public: /// The pointed-to type. typedef _Tp element_type; /** * @brief An %auto_ptr is usually constructed from a raw pointer. * @param p A pointer (defaults to NULL). * * This object now @e owns the object pointed to by @a p. */ explicit auto_ptr(element_type* __p = 0) throw() : _M_ptr(__p) { } /** * @brief An %auto_ptr can be constructed from another %auto_ptr. * @param a Another %auto_ptr of the same type. * * This object now @e owns the object previously owned by @a a, * which has given up ownership. */ auto_ptr(auto_ptr& __a) throw() : _M_ptr(__a.release()) { } /** * @brief An %auto_ptr can be constructed from another %auto_ptr. * @param a Another %auto_ptr of a different but related type. * * A pointer-to-Tp1 must be convertible to a * pointer-to-Tp/element_type. * * This object now @e owns the object previously owned by @a a, * which has given up ownership. */ template auto_ptr(auto_ptr<_Tp1>& __a) throw() : _M_ptr(__a.release()) { } /** * @brief %auto_ptr assignment operator. * @param a Another %auto_ptr of the same type. * * This object now @e owns the object previously owned by @a a, * which has given up ownership. The object that this one @e * used to own and track has been deleted. */ auto_ptr& operator=(auto_ptr& __a) throw() { reset(__a.release()); return *this; } /** * @brief %auto_ptr assignment operator. * @param a Another %auto_ptr of a different but related type. * * A pointer-to-Tp1 must be convertible to a pointer-to-Tp/element_type. * * This object now @e owns the object previously owned by @a a, * which has given up ownership. The object that this one @e * used to own and track has been deleted. */ template auto_ptr& operator=(auto_ptr<_Tp1>& __a) throw() { reset(__a.release()); return *this; } /** * When the %auto_ptr goes out of scope, the object it owns is * deleted. If it no longer owns anything (i.e., @c get() is * @c NULL), then this has no effect. * * The C++ standard says there is supposed to be an empty throw * specification here, but omitting it is standard conforming. Its * presence can be detected only if _Tp::~_Tp() throws, but this is * prohibited. [17.4.3.6]/2 */ ~auto_ptr() { delete _M_ptr; } /** * @brief Smart pointer dereferencing. * * If this %auto_ptr no longer owns anything, then this * operation will crash. (For a smart pointer, "no longer owns * anything" is the same as being a null pointer, and you know * what happens when you dereference one of those...) */ element_type& operator*() const throw() { _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0); return *_M_ptr; } /** * @brief Smart pointer dereferencing. * * This returns the pointer itself, which the language then will * automatically cause to be dereferenced. */ element_type* operator->() const throw() { _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0); return _M_ptr; } /** * @brief Bypassing the smart pointer. * @return The raw pointer being managed. * * You can get a copy of the pointer that this object owns, for * situations such as passing to a function which only accepts * a raw pointer. * * @note This %auto_ptr still owns the memory. */ element_type* get() const throw() { return _M_ptr; } /** * @brief Bypassing the smart pointer. * @return The raw pointer being managed. * * You can get a copy of the pointer that this object owns, for * situations such as passing to a function which only accepts * a raw pointer. * * @note This %auto_ptr no longer owns the memory. When this object * goes out of scope, nothing will happen. */ element_type* release() throw() { element_type* __tmp = _M_ptr; _M_ptr = 0; return __tmp; } /** * @brief Forcibly deletes the managed object. * @param p A pointer (defaults to NULL). * * This object now @e owns the object pointed to by @a p. The * previous object has been deleted. */ void reset(element_type* __p = 0) throw() { if (__p != _M_ptr) { delete _M_ptr; _M_ptr = __p; } } /** * @brief Automatic conversions * * These operations convert an %auto_ptr into and from an auto_ptr_ref * automatically as needed. This allows constructs such as * @code * auto_ptr func_returning_auto_ptr(.....); * ... * auto_ptr ptr = func_returning_auto_ptr(.....); * @endcode */ auto_ptr(auto_ptr_ref __ref) throw() : _M_ptr(__ref._M_ptr) { } auto_ptr& operator=(auto_ptr_ref __ref) throw() { if (__ref._M_ptr != this->get()) { delete _M_ptr; _M_ptr = __ref._M_ptr; } return *this; } template operator auto_ptr_ref<_Tp1>() throw() { return auto_ptr_ref<_Tp1>(this->release()); } template operator auto_ptr<_Tp1>() throw() { return auto_ptr<_Tp1>(this->release()); } } _GLIBCXX_DEPRECATED_ATTR; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 541. shared_ptr template assignment and void template<> class auto_ptr { public: typedef void element_type; } _GLIBCXX_DEPRECATED_ATTR; _GLIBCXX_END_NAMESPACE #endif /* _STL_AUTO_PTR_H */ // Hashing set implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ /** @file backward/hash_set * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). */ #ifndef _HASH_SET #define _HASH_SET 1 #include "backward_warning.h" #include #include #include _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx) using std::equal_to; using std::allocator; using std::pair; using std::_Identity; /** * This is an SGI extension. * @ingroup SGIextensions * @doctodo */ template, class _EqualKey = equal_to<_Value>, class _Alloc = allocator<_Value> > class hash_set { // concept requirements __glibcxx_class_requires(_Value, _SGIAssignableConcept) __glibcxx_class_requires3(_HashFcn, size_t, _Value, _UnaryFunctionConcept) __glibcxx_class_requires3(_EqualKey, _Value, _Value, _BinaryPredicateConcept) private: typedef hashtable<_Value, _Value, _HashFcn, _Identity<_Value>, _EqualKey, _Alloc> _Ht; _Ht _M_ht; public: typedef typename _Ht::key_type key_type; typedef typename _Ht::value_type value_type; typedef typename _Ht::hasher hasher; typedef typename _Ht::key_equal key_equal; typedef typename _Ht::size_type size_type; typedef typename _Ht::difference_type difference_type; typedef typename _Alloc::pointer pointer; typedef typename _Alloc::const_pointer const_pointer; typedef typename _Alloc::reference reference; typedef typename _Alloc::const_reference const_reference; typedef typename _Ht::const_iterator iterator; typedef typename _Ht::const_iterator const_iterator; typedef typename _Ht::allocator_type allocator_type; hasher hash_funct() const { return _M_ht.hash_funct(); } key_equal key_eq() const { return _M_ht.key_eq(); } allocator_type get_allocator() const { return _M_ht.get_allocator(); } hash_set() : _M_ht(100, hasher(), key_equal(), allocator_type()) {} explicit hash_set(size_type __n) : _M_ht(__n, hasher(), key_equal(), allocator_type()) {} hash_set(size_type __n, const hasher& __hf) : _M_ht(__n, __hf, key_equal(), allocator_type()) {} hash_set(size_type __n, const hasher& __hf, const key_equal& __eql, const allocator_type& __a = allocator_type()) : _M_ht(__n, __hf, __eql, __a) {} template hash_set(_InputIterator __f, _InputIterator __l) : _M_ht(100, hasher(), key_equal(), allocator_type()) { _M_ht.insert_unique(__f, __l); } template hash_set(_InputIterator __f, _InputIterator __l, size_type __n) : _M_ht(__n, hasher(), key_equal(), allocator_type()) { _M_ht.insert_unique(__f, __l); } template hash_set(_InputIterator __f, _InputIterator __l, size_type __n, const hasher& __hf) : _M_ht(__n, __hf, key_equal(), allocator_type()) { _M_ht.insert_unique(__f, __l); } template hash_set(_InputIterator __f, _InputIterator __l, size_type __n, const hasher& __hf, const key_equal& __eql, const allocator_type& __a = allocator_type()) : _M_ht(__n, __hf, __eql, __a) { _M_ht.insert_unique(__f, __l); } size_type size() const { return _M_ht.size(); } size_type max_size() const { return _M_ht.max_size(); } bool empty() const { return _M_ht.empty(); } void swap(hash_set& __hs) { _M_ht.swap(__hs._M_ht); } template friend bool operator==(const hash_set<_Val, _HF, _EqK, _Al>&, const hash_set<_Val, _HF, _EqK, _Al>&); iterator begin() const { return _M_ht.begin(); } iterator end() const { return _M_ht.end(); } pair insert(const value_type& __obj) { pair __p = _M_ht.insert_unique(__obj); return pair(__p.first, __p.second); } template void insert(_InputIterator __f, _InputIterator __l) { _M_ht.insert_unique(__f, __l); } pair insert_noresize(const value_type& __obj) { pair __p = _M_ht.insert_unique_noresize(__obj); return pair(__p.first, __p.second); } iterator find(const key_type& __key) const { return _M_ht.find(__key); } size_type count(const key_type& __key) const { return _M_ht.count(__key); } pair equal_range(const key_type& __key) const { return _M_ht.equal_range(__key); } size_type erase(const key_type& __key) {return _M_ht.erase(__key); } void erase(iterator __it) { _M_ht.erase(__it); } void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); } void clear() { _M_ht.clear(); } void resize(size_type __hint) { _M_ht.resize(__hint); } size_type bucket_count() const { return _M_ht.bucket_count(); } size_type max_bucket_count() const { return _M_ht.max_bucket_count(); } size_type elems_in_bucket(size_type __n) const { return _M_ht.elems_in_bucket(__n); } }; template