|| 
			     !traits_type::eq(__c, this->gptr()[-1]), false))
	  __ret = this->pbackfail(traits_type::to_int_type(__c));
	else 
	  {
	    this->gbump(-1);
	    __ret = traits_type::to_int_type(*this->gptr());
	  }
	return __ret;
      }

      /**
       *  @brief  Moving backwards in the input stream.
       *  @return  The previous character, if possible.
       *
       *  If a putback position is available, this function decrements the
       *  input pointer and returns that character.  Otherwise, calls and
       *  returns pbackfail().  The effect is to "unget" the last character
       *  "gotten".
      */
      int_type 
      sungetc()
      {
	int_type __ret;
	if (__builtin_expect(this->eback() < this->gptr(), true))
	  {
	    this->gbump(-1);
	    __ret = traits_type::to_int_type(*this->gptr());
	  }
	else 
	  __ret = this->pbackfail();
	return __ret;
      }

      // [27.5.2.2.5] put area
      /**
       *  @brief  Entry point for all single-character output functions.
       *  @param  c  A character to output.
       *  @return  @a c, if possible.
       *
       *  One of two public output functions.
       *
       *  If a write position is available for the output sequence (i.e.,
       *  the buffer is not full), stores @a c in that position, increments
       *  the position, and returns @c traits::to_int_type(c).  If a write
       *  position is not available, returns @c overflow(c).
      */
      int_type 
      sputc(char_type __c)
      {
	int_type __ret;
	if (__builtin_expect(this->pptr() < this->epptr(), true))
	  {
	    *this->pptr() = __c;
	    this->pbump(1);
	    __ret = traits_type::to_int_type(__c);
	  }
	else
	  __ret = this->overflow(traits_type::to_int_type(__c));
	return __ret;
      }

      /**
       *  @brief  Entry point for all single-character output functions.
       *  @param  s  A buffer read area.
       *  @param  n  A count.
       *
       *  One of two public output functions.
       *
       *
       *  Returns xsputn(s,n).  The effect is to write @a s[0] through
       *  @a s[n-1] to the output sequence, if possible.
      */
      streamsize 
      sputn(const char_type* __s, streamsize __n)
      { return this->xsputn(__s, __n); }

    protected:
      /**
       *  @brief  Base constructor.
       *
       *  Only called from derived constructors, and sets up all the
       *  buffer data to zero, including the pointers described in the
       *  basic_streambuf class description.  Note that, as a result,
       *  - the class starts with no read nor write positions available,
       *  - this is not an error
      */
      basic_streambuf()
      : _M_in_beg(0), _M_in_cur(0), _M_in_end(0), 
      _M_out_beg(0), _M_out_cur(0), _M_out_end(0),
      _M_buf_locale(locale()) 
      { }

      // [27.5.2.3.1] get area access
      //@{
      /**
       *  @brief  Access to the get area.
       *
       *  These functions are only available to other protected functions,
       *  including derived classes.
       *
       *  - eback() returns the beginning pointer for the input sequence
       *  - gptr() returns the next pointer for the input sequence
       *  - egptr() returns the end pointer for the input sequence
      */
      char_type* 
      eback() const { return _M_in_beg; }

      char_type* 
      gptr()  const { return _M_in_cur;  }

      char_type* 
      egptr() const { return _M_in_end; }
      //@}

      /**
       *  @brief  Moving the read position.
       *  @param  n  The delta by which to move.
       *
       *  This just advances the read position without returning any data.
      */
      void 
      gbump(int __n) { _M_in_cur += __n; }

      /**
       *  @brief  Setting the three read area pointers.
       *  @param  gbeg  A pointer.
       *  @param  gnext  A pointer.
       *  @param  gend  A pointer.
       *  @post  @a gbeg == @c eback(), @a gnext == @c gptr(), and
       *         @a gend == @c egptr()
      */
      void 
      setg(char_type* __gbeg, char_type* __gnext, char_type* __gend)
      {
	_M_in_beg = __gbeg;
	_M_in_cur = __gnext;
	_M_in_end = __gend;
      }

      // [27.5.2.3.2] put area access
      //@{
      /**
       *  @brief  Access to the put area.
       *
       *  These functions are only available to other protected functions,
       *  including derived classes.
       *
       *  - pbase() returns the beginning pointer for the output sequence
       *  - pptr() returns the next pointer for the output sequence
       *  - epptr() returns the end pointer for the output sequence
      */
      char_type* 
      pbase() const { return _M_out_beg; }

      char_type* 
      pptr() const { return _M_out_cur; }

      char_type* 
      epptr() const { return _M_out_end; }
      //@}

      /**
       *  @brief  Moving the write position.
       *  @param  n  The delta by which to move.
       *
       *  This just advances the write position without returning any data.
      */
      void 
      pbump(int __n) { _M_out_cur += __n; }

      /**
       *  @brief  Setting the three write area pointers.
       *  @param  pbeg  A pointer.
       *  @param  pend  A pointer.
       *  @post  @a pbeg == @c pbase(), @a pbeg == @c pptr(), and
       *         @a pend == @c epptr()
      */
      void 
      setp(char_type* __pbeg, char_type* __pend)
      { 
	_M_out_beg = _M_out_cur = __pbeg; 
	_M_out_end = __pend;
      }

      // [27.5.2.4] virtual functions
      // [27.5.2.4.1] locales
      /**
       *  @brief  Changes translations.
       *  @param  loc  A new locale.
       *
       *  Translations done during I/O which depend on the current locale
       *  are changed by this call.  The standard adds, "Between invocations
       *  of this function a class derived from streambuf can safely cache
       *  results of calls to locale functions and to members of facets
       *  so obtained."
       *
       *  @note  Base class version does nothing.
      */
      virtual void 
      imbue(const locale&) 
      { }

      // [27.5.2.4.2] buffer management and positioning
      /**
       *  @brief  Manipulates the buffer.
       *
       *  Each derived class provides its own appropriate behavior.  See
       *  the next-to-last paragraph of 
       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt11ch25s02.html
       *  for more on this function.
       *
       *  @note  Base class version does nothing, returns @c this.
      */
      virtual basic_streambuf<char_type,_Traits>* 
      setbuf(char_type*, streamsize)
      {	return this; }
      
      /**
       *  @brief  Alters the stream positions.
       *
       *  Each derived class provides its own appropriate behavior.
       *  @note  Base class version does nothing, returns a @c pos_type
       *         that represents an invalid stream position.
      */
      virtual pos_type 
      seekoff(off_type, ios_base::seekdir,
	      ios_base::openmode /*__mode*/ = ios_base::in | ios_base::out)
      { return pos_type(off_type(-1)); } 

      /**
       *  @brief  Alters the stream positions.
       *
       *  Each derived class provides its own appropriate behavior.
       *  @note  Base class version does nothing, returns a @c pos_type
       *         that represents an invalid stream position.
      */
      virtual pos_type 
      seekpos(pos_type, 
	      ios_base::openmode /*__mode*/ = ios_base::in | ios_base::out)
      { return pos_type(off_type(-1)); } 

      /**
       *  @brief  Synchronizes the buffer arrays with the controlled sequences.
       *  @return  -1 on failure.
       *
       *  Each derived class provides its own appropriate behavior,
       *  including the definition of "failure".
       *  @note  Base class version does nothing, returns zero.
      */
      virtual int 
      sync() { return 0; }

      // [27.5.2.4.3] get area
      /**
       *  @brief  Investigating the data available.
       *  @return  An estimate of the number of characters available in the
       *           input sequence, or -1.
       *
       *  "If it returns a positive value, then successive calls to
       *  @c underflow() will not return @c traits::eof() until at least that
       *  number of characters have been supplied.  If @c showmanyc()
       *  returns -1, then calls to @c underflow() or @c uflow() will fail."
       *  [27.5.2.4.3]/1
       *
       *  @note  Base class version does nothing, returns zero.
       *  @note  The standard adds that "the intention is not only that the
       *         calls [to underflow or uflow] will not return @c eof() but
       *         that they will return "immediately".
       *  @note  The standard adds that "the morphemes of @c showmanyc are
       *         "es-how-many-see", not "show-manic".
      */
      virtual streamsize 
      showmanyc() { return 0; }

      /**
       *  @brief  Multiple character extraction.
       *  @param  s  A buffer area.
       *  @param  n  Maximum number of characters to assign.
       *  @return  The number of characters assigned.
       *
       *  Fills @a s[0] through @a s[n-1] with characters from the input
       *  sequence, as if by @c sbumpc().  Stops when either @a n characters
       *  have been copied, or when @c traits::eof() would be copied.
       *
       *  It is expected that derived classes provide a more efficient
       *  implementation by overriding this definition.
      */
      virtual streamsize 
      xsgetn(char_type* __s, streamsize __n);

      /**
       *  @brief  Fetches more data from the controlled sequence.
       *  @return  The first character from the <em>pending sequence</em>.
       *
       *  Informally, this function is called when the input buffer is
       *  exhausted (or does not exist, as buffering need not actually be
       *  done).  If a buffer exists, it is "refilled".  In either case, the
       *  next available character is returned, or @c traits::eof() to
       *  indicate a null pending sequence.
       *
       *  For a formal definition of the pending sequence, see a good text
       *  such as Langer & Kreft, or [27.5.2.4.3]/7-14.
       *
       *  A functioning input streambuf can be created by overriding only
       *  this function (no buffer area will be used).  For an example, see
       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt11ch25.html
       *
       *  @note  Base class version does nothing, returns eof().
      */
      virtual int_type 
      underflow()
      { return traits_type::eof(); }

      /**
       *  @brief  Fetches more data from the controlled sequence.
       *  @return  The first character from the <em>pending sequence</em>.
       *
       *  Informally, this function does the same thing as @c underflow(),
       *  and in fact is required to call that function.  It also returns
       *  the new character, like @c underflow() does.  However, this
       *  function also moves the read position forward by one.
      */
      virtual int_type 
      uflow() 
      {
	int_type __ret = traits_type::eof();
	const bool __testeof = traits_type::eq_int_type(this->underflow(), 
							__ret);
	if (!__testeof)
	  {
	    __ret = traits_type::to_int_type(*this->gptr());
	    this->gbump(1);
	  }
	return __ret;    
      }

      // [27.5.2.4.4] putback
      /**
       *  @brief  Tries to back up the input sequence.
       *  @param  c  The character to be inserted back into the sequence.
       *  @return  eof() on failure, "some other value" on success
       *  @post  The constraints of @c gptr(), @c eback(), and @c pptr()
       *         are the same as for @c underflow().
       *
       *  @note  Base class version does nothing, returns eof().
      */
      virtual int_type 
      pbackfail(int_type /* __c */  = traits_type::eof())
      { return traits_type::eof(); }

      // Put area:
      /**
       *  @brief  Multiple character insertion.
       *  @param  s  A buffer area.
       *  @param  n  Maximum number of characters to write.
       *  @return  The number of characters written.
       *
       *  Writes @a s[0] through @a s[n-1] to the output sequence, as if
       *  by @c sputc().  Stops when either @a n characters have been
       *  copied, or when @c sputc() would return @c traits::eof().
       *
       *  It is expected that derived classes provide a more efficient
       *  implementation by overriding this definition.
      */
      virtual streamsize 
      xsputn(const char_type* __s, streamsize __n);

      /**
       *  @brief  Consumes data from the buffer; writes to the
       *          controlled sequence.
       *  @param  c  An additional character to consume.
       *  @return  eof() to indicate failure, something else (usually
       *           @a c, or not_eof())
       *
       *  Informally, this function is called when the output buffer is full
       *  (or does not exist, as buffering need not actually be done).  If a
       *  buffer exists, it is "consumed", with "some effect" on the
       *  controlled sequence.  (Typically, the buffer is written out to the
       *  sequence verbatim.)  In either case, the character @a c is also
       *  written out, if @a c is not @c eof().
       *
       *  For a formal definition of this function, see a good text
       *  such as Langer & Kreft, or [27.5.2.4.5]/3-7.
       *
       *  A functioning output streambuf can be created by overriding only
       *  this function (no buffer area will be used).
       *
       *  @note  Base class version does nothing, returns eof().
      */
      virtual int_type 
      overflow(int_type /* __c */ = traits_type::eof())
      { return traits_type::eof(); }

#if _GLIBCXX_DEPRECATED
    // Annex D.6
    public:
      /**
       *  @brief  Tosses a character.
       *
       *  Advances the read pointer, ignoring the character that would have
       *  been read.
       *
       *  See http://gcc.gnu.org/ml/libstdc++/2002-05/msg00168.html
       */
      void 
      stossc() 
      {
	if (this->gptr() < this->egptr()) 
	  this->gbump(1);
	else 
	  this->uflow();
      }
#endif

    private:
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // Side effect of DR 50. 
      basic_streambuf(const __streambuf_type& __sb)
      : _M_in_beg(__sb._M_in_beg), _M_in_cur(__sb._M_in_cur), 
      _M_in_end(__sb._M_in_end), _M_out_beg(__sb._M_out_beg), 
      _M_out_cur(__sb._M_out_cur), _M_out_end(__sb._M_out_cur),
      _M_buf_locale(__sb._M_buf_locale) 
      { }

      __streambuf_type& 
      operator=(const __streambuf_type&) { return *this; };
    };

  // Explicit specialization declarations, defined in src/streambuf.cc.
  template<>
    streamsize
    __copy_streambufs_eof(basic_streambuf<char>* __sbin,
			  basic_streambuf<char>* __sbout, bool& __ineof);
#ifdef _GLIBCXX_USE_WCHAR_T
  template<>
    streamsize
    __copy_streambufs_eof(basic_streambuf<wchar_t>* __sbin,
			  basic_streambuf<wchar_t>* __sbout, bool& __ineof);
#endif

_GLIBCXX_END_NAMESPACE

#ifndef _GLIBCXX_EXPORT_TEMPLATE
# include <bits/streambuf.tcc>
#endif

#endif /* _GLIBCXX_STREAMBUF */
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������// -*- C++ -*- forwarding header.

// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
// 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING.  If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file include/cstdarg
 *  This is a Standard C++ Library file.  You should @c #include this file
 *  in your programs, rather than any of the "*.h" implementation files.
 *
 *  This is the C++ version of the Standard C Library header @c stdarg.h,
 *  and its contents are (mostly) the same as that header, but are all
 *  contained in the namespace @c std (except for names which are defined
 *  as macros in C).
 */

//
// ISO C++ 14882: 20.4.6  C library
//

#pragma GCC system_header

#include <bits/c++config.h>
#include <stdarg.h>

#ifndef _GLIBCXX_CSTDARG
#define _GLIBCXX_CSTDARG 1

// Adhere to section 17.4.1.2 clause 5 of ISO 14882:1998
#ifndef va_end
#define va_end(ap) va_end (ap)
#endif

_GLIBCXX_BEGIN_NAMESPACE(std)

  using ::va_list;

_GLIBCXX_END_NAMESPACE

#endif
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������// -*- C++ -*- forwarding header.

// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
// 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING.  If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file include/cwchar
 *  This is a Standard C++ Library file.  You should @c #include this file
 *  in your programs, rather than any of the "*.h" implementation files.
 *
 *  This is the C++ version of the Standard C Library header @c wchar.h,
 *  and its contents are (mostly) the same as that header, but are all
 *  contained in the namespace @c std (except for names which are defined
 *  as macros in C).
 */

//
// ISO C++ 14882: 21.4
//

#pragma GCC system_header

#include <bits/c++config.h>
#include <cstddef>

#if _GLIBCXX_HAVE_WCHAR_H
#include <wchar.h>
#endif

#ifndef _GLIBCXX_CWCHAR
#define _GLIBCXX_CWCHAR 1

// Need to do a bit of trickery here with mbstate_t as char_traits
// assumes it is in wchar.h, regardless of wchar_t specializations.
#ifndef _GLIBCXX_HAVE_MBSTATE_T
extern "C"
{
  typedef struct
  {
    int __fill[6];
  } mbstate_t;
}
#endif

_GLIBCXX_BEGIN_NAMESPACE(std)

  using ::mbstate_t;

_GLIBCXX_END_NAMESPACE

// Get rid of those macros defined in <wchar.h> in lieu of real functions.
#undef btowc
#undef fgetwc
#undef fgetws
#undef fputwc
#undef fputws
#undef fwide
#undef fwprintf
#undef fwscanf
#undef getwc
#undef getwchar
#undef mbrlen
#undef mbrtowc
#undef mbsinit
#undef mbsrtowcs
#undef putwc
#undef putwchar
#undef swprintf
#undef swscanf
#undef ungetwc
#undef vfwprintf
#if _GLIBCXX_HAVE_VFWSCANF
# undef vfwscanf
#endif
#undef vswprintf
#if _GLIBCXX_HAVE_VSWSCANF
# undef vswscanf
#endif
#undef vwprintf
#if _GLIBCXX_HAVE_VWSCANF
# undef vwscanf
#endif
#undef wcrtomb
#undef wcscat
#undef wcschr
#undef wcscmp
#undef wcscoll
#undef wcscpy
#undef wcscspn
#undef wcsftime
#undef wcslen
#undef wcsncat
#undef wcsncmp
#undef wcsncpy
#undef wcspbrk
#undef wcsrchr
#undef wcsrtombs
#undef wcsspn
#undef wcsstr
#undef wcstod
#if _GLIBCXX_HAVE_WCSTOF
# undef wcstof
#endif
#undef wcstok
#undef wcstol
#undef wcstoul
#undef wcsxfrm
#undef wctob
#undef wmemchr
#undef wmemcmp
#undef wmemcpy
#undef wmemmove
#undef wmemset
#undef wprintf
#undef wscanf

#if _GLIBCXX_USE_WCHAR_T

_GLIBCXX_BEGIN_NAMESPACE(std)

  using ::wint_t;

  using ::btowc;
  using ::fgetwc;
  using ::fgetws;
  using ::fputwc;
  using ::fputws;
  using ::fwide;
  using ::fwprintf;
  using ::fwscanf;
  using ::getwc;
  using ::getwchar;
  using ::mbrlen;
  using ::mbrtowc;
  using ::mbsinit;
  using ::mbsrtowcs;
  using ::putwc;
  using ::putwchar;
  using ::swprintf;
  using ::swscanf;
  using ::ungetwc;
  using ::vfwprintf;
#if _GLIBCXX_HAVE_VFWSCANF
  using ::vfwscanf;
#endif
  using ::vswprintf;
#if _GLIBCXX_HAVE_VSWSCANF
  using ::vswscanf;
#endif
  using ::vwprintf;
#if _GLIBCXX_HAVE_VWSCANF
  using ::vwscanf;
#endif
  using ::wcrtomb;
  using ::wcscat;
  using ::wcscmp;
  using ::wcscoll;
  using ::wcscpy;
  using ::wcscspn;
  using ::wcsftime;
  using ::wcslen;
  using ::wcsncat;
  using ::wcsncmp;
  using ::wcsncpy;
  using ::wcsrtombs;
  using ::wcsspn;
  using ::wcstod;
#if _GLIBCXX_HAVE_WCSTOF
  using ::wcstof;
#endif
  using ::wcstok;
  using ::wcstol;
  using ::wcstoul;
  using ::wcsxfrm;
  using ::wctob;
  using ::wmemcmp;
  using ::wmemcpy;
  using ::wmemmove;
  using ::wmemset;
  using ::wprintf;
  using ::wscanf;

  using ::wcschr;

  inline wchar_t*
  wcschr(wchar_t* __p, wchar_t __c)
  { return wcschr(const_cast<const wchar_t*>(__p), __c); }

  using ::wcspbrk;

  inline wchar_t*
  wcspbrk(wchar_t* __s1, const wchar_t* __s2)
  { return wcspbrk(const_cast<const wchar_t*>(__s1), __s2); }

  using ::wcsrchr;

  inline wchar_t*
  wcsrchr(wchar_t* __p, wchar_t __c)
  { return wcsrchr(const_cast<const wchar_t*>(__p), __c); }

  using ::wcsstr;

  inline wchar_t*
  wcsstr(wchar_t* __s1, const wchar_t* __s2)
  { return wcsstr(const_cast<const wchar_t*>(__s1), __s2); }

  using ::wmemchr;

  inline wchar_t*
  wmemchr(wchar_t* __p, wchar_t __c, size_t __n)
  { return wmemchr(const_cast<const wchar_t*>(__p), __c, __n); }

_GLIBCXX_END_NAMESPACE

#if _GLIBCXX_USE_C99

#undef wcstold
#undef wcstoll
#undef wcstoull

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

#if _GLIBCXX_USE_C99_CHECK || _GLIBCXX_USE_C99_DYNAMIC
  extern "C" long double
    (wcstold)(const wchar_t * restrict, wchar_t ** restrict);
#endif
#if !_GLIBCXX_USE_C99_DYNAMIC
  using ::wcstold;
#endif
#if _GLIBCXX_USE_C99_LONG_LONG_CHECK || _GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
  extern "C" long long int
    (wcstoll)(const wchar_t * restrict, wchar_t ** restrict, int);
  extern "C" unsigned long long int
    (wcstoull)(const wchar_t * restrict, wchar_t ** restrict, int);
#endif
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
  using ::wcstoll;
  using ::wcstoull;
#endif

_GLIBCXX_END_NAMESPACE

_GLIBCXX_BEGIN_NAMESPACE(std)

  using ::__gnu_cxx::wcstold;
  using ::__gnu_cxx::wcstoll;
  using ::__gnu_cxx::wcstoull;

_GLIBCXX_END_NAMESPACE

#endif

#endif //_GLIBCXX_USE_WCHAR_T

#ifdef __GXX_EXPERIMENTAL_CXX0X__
#  if defined(_GLIBCXX_INCLUDE_AS_TR1)
#    error C++0x header cannot be included from TR1 header
#  endif
#  if defined(_GLIBCXX_INCLUDE_AS_CXX0X)
#    include <tr1_impl/cwchar>
#  else
#    define _GLIBCXX_INCLUDE_AS_CXX0X
#    define _GLIBCXX_BEGIN_NAMESPACE_TR1
#    define _GLIBCXX_END_NAMESPACE_TR1
#    define _GLIBCXX_TR1
#    include <tr1_impl/cwchar>
#    undef _GLIBCXX_TR1
#    undef _GLIBCXX_END_NAMESPACE_TR1
#    undef _GLIBCXX_BEGIN_NAMESPACE_TR1
#    undef _GLIBCXX_INCLUDE_AS_CXX0X
#  endif
#endif

#endif
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������// <deque> -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING.  If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file include/deque
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_DEQUE
#define _GLIBCXX_DEQUE 1

#pragma GCC system_header

#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_deque.h>

#ifndef _GLIBCXX_EXPORT_TEMPLATE
# include <bits/deque.tcc>
#endif

#ifdef _GLIBCXX_DEBUG
# include <debug/deque>
#endif

#endif /* _GLIBCXX_DEQUE */
�������������������������������������������������������������������������B���.�������..��C���
type_traits.h���D���bitmap_allocator.h��E��$�codecvt_specializations.h���F���
concurrence.h���G���
vstring_fwd.h���H���mt_allocator.h��I���pod_char_traits.h���J���	algorithm���K���array_allocator.h���L���iteratorM���numeric_traits.hN���numeric�O���	vstring.h���P���vstring.tcc�Q���slist���R���pool_allocator.hS���pb_ds���u���hash_setv���stdio_sync_filebuf.hw���memory��x���throw_allocator.h���y���sso_string_base.h���z���
enc_filebuf.h���{���vstring_util.h��|���debug_allocator.h���}���atomicity.h�~���hash_map���
ropeimpl.h��€���malloc_allocator.h�����rope‚���
typelist.h��ƒ���rb_tree�„���rc_string_base.h…���new_allocator.h�†���
functional��‡��Ü�stdio_filebuf.h�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������// -*- C++ -*-

// Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 2, or (at your option) any later
// version.

// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free
// software library without restriction.  Specifically, if other files
// instantiate templates or use macros or inline functions from this
// file, or you compile this file and link it with other files to
// produce an executable, this file does not by itself cause the
// resulting executable to be covered by the GNU General Public
// License.  This exception does not however invalidate any other
// reasons why the executable file might be covered by the GNU General
// Public License.

/** @file ext/type_traits.h
 *  This file is a GNU extension to the Standard C++ Library.
 */

#ifndef _EXT_TYPE_TRAITS
#define _EXT_TYPE_TRAITS 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/cpp_type_traits.h>

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  // Define a nested type if some predicate holds.
  template<bool, typename>
    struct __enable_if 
    { };

  template<typename _Tp>
    struct __enable_if<true, _Tp>
    { typedef _Tp __type; };


  // Conditional expression for types. If true, first, if false, second.
  template<bool _Cond, typename _Iftrue, typename _Iffalse>
    struct __conditional_type
    { typedef _Iftrue __type; };

  template<typename _Iftrue, typename _Iffalse>
    struct __conditional_type<false, _Iftrue, _Iffalse>
    { typedef _Iffalse __type; };


  // Given an integral builtin type, return the corresponding unsigned type.
  template<typename _Tp>
    struct __add_unsigned
    { 
    private:
      typedef __enable_if<std::__is_integer<_Tp>::__value, _Tp> __if_type;
      
    public:
      typedef typename __if_type::__type __type; 
    };

  template<>
    struct __add_unsigned<char>
    { typedef unsigned char __type; };

  template<>
    struct __add_unsigned<signed char>
    { typedef unsigned char __type; };

  template<>
    struct __add_unsigned<short>
    { typedef unsigned short __type; };

  template<>
    struct __add_unsigned<int>
    { typedef unsigned int __type; };

  template<>
    struct __add_unsigned<long>
    { typedef unsigned long __type; };

  template<>
    struct __add_unsigned<long long>
    { typedef unsigned long long __type; };

  // Declare but don't define.
  template<>
    struct __add_unsigned<bool>;

  template<>
    struct __add_unsigned<wchar_t>;


  // Given an integral builtin type, return the corresponding signed type.
  template<typename _Tp>
    struct __remove_unsigned
    { 
    private:
      typedef __enable_if<std::__is_integer<_Tp>::__value, _Tp> __if_type;
      
    public:
      typedef typename __if_type::__type __type; 
    };

  template<>
    struct __remove_unsigned<char>
    { typedef signed char __type; };

  template<>
    struct __remove_unsigned<unsigned char>
    { typedef signed char __type; };

  template<>
    struct __remove_unsigned<unsigned short>
    { typedef short __type; };

  template<>
    struct __remove_unsigned<unsigned int>
    { typedef int __type; };

  template<>
    struct __remove_unsigned<unsigned long>
    { typedef long __type; };

  template<>
    struct __remove_unsigned<unsigned long long>
    { typedef long long __type; };

  // Declare but don't define.
  template<>
    struct __remove_unsigned<bool>;

  template<>
    struct __remove_unsigned<wchar_t>;


  // For use in string and vstring.
  template<typename _Type>
    inline bool
    __is_null_pointer(_Type* __ptr)
    { return __ptr == 0; }

  template<typename _Type>
    inline bool
    __is_null_pointer(_Type)
    { return false; }


  // For complex and cmath
  template<typename _Tp, bool = std::__is_integer<_Tp>::__value>
    struct __promote
    { typedef double __type; };

  template<typename _Tp>
    struct __promote<_Tp, false>
    { typedef _Tp __type; };

  template<typename _Tp, typename _Up>
    struct __promote_2
    {
    private:
      typedef typename __promote<_Tp>::__type __type1;
      typedef typename __promote<_Up>::__type __type2;

    public:
      typedef __typeof__(__type1() + __type2()) __type;
    };

  template<typename _Tp, typename _Up, typename _Vp>
    struct __promote_3
    {
    private:
      typedef typename __promote<_Tp>::__type __type1;
      typedef typename __promote<_Up>::__type __type2;
      typedef typename __promote<_Vp>::__type __type3;

    public:
      typedef __typeof__(__type1() + __type2() + __type3()) __type;
    };

  template<typename _Tp, typename _Up, typename _Vp, typename _Wp>
    struct __promote_4
    {
    private:
      typedef typename __promote<_Tp>::__type __type1;
      typedef typename __promote<_Up>::__type __type2;
      typedef typename __promote<_Vp>::__type __type3;
      typedef typename __promote<_Wp>::__type __type4;

    public:
      typedef __typeof__(__type1() + __type2() + __type3() + __type4()) __type;
    };

_GLIBCXX_END_NAMESPACE

#endif 
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������// Bitmap Allocator. -*- C++ -*-

// Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file ext/bitmap_allocator.h
 *  This file is a GNU extension to the Standard C++ Library.
 */

#ifndef _BITMAP_ALLOCATOR_H
#define _BITMAP_ALLOCATOR_H 1

#include <cstddef> // For std::size_t, and ptrdiff_t.
#include <bits/functexcept.h> // For __throw_bad_alloc().
#include <utility> // For std::pair.
#include <functional> // For greater_equal, and less_equal.
#include <new> // For operator new.
#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
#include <ext/concurrence.h>
#include <bits/stl_move.h>

/** @brief The constant in the expression below is the alignment
 * required in bytes.
 */
#define _BALLOC_ALIGN_BYTES 8

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  using std::size_t;
  using std::ptrdiff_t;

  namespace __detail
  {
    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  __mini_vector<> is a stripped down version of the
     *  full-fledged std::vector<>.
     *
     *  It is to be used only for built-in types or PODs. Notable
     *  differences are:
     * 
     *  @detail
     *  1. Not all accessor functions are present.
     *  2. Used ONLY for PODs.
     *  3. No Allocator template argument. Uses ::operator new() to get
     *  memory, and ::operator delete() to free it.
     *  Caveat: The dtor does NOT free the memory allocated, so this a
     *  memory-leaking vector!
     */
    template<typename _Tp>
      class __mini_vector
      {
	__mini_vector(const __mini_vector&);
	__mini_vector& operator=(const __mini_vector&);

      public:
	typedef _Tp value_type;
	typedef _Tp* pointer;
	typedef _Tp& reference;
	typedef const _Tp& const_reference;
	typedef size_t size_type;
	typedef ptrdiff_t difference_type;
	typedef pointer iterator;

      private:
	pointer _M_start;
	pointer _M_finish;
	pointer _M_end_of_storage;

	size_type
	_M_space_left() const throw()
	{ return _M_end_of_storage - _M_finish; }

	pointer
	allocate(size_type __n)
	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }

	void
	deallocate(pointer __p, size_type)
	{ ::operator delete(__p); }

      public:
	// Members used: size(), push_back(), pop_back(),
	// insert(iterator, const_reference), erase(iterator),
	// begin(), end(), back(), operator[].

	__mini_vector() : _M_start(0), _M_finish(0), 
			  _M_end_of_storage(0)
	{ }

#if 0
	~__mini_vector()
	{
	  if (this->_M_start)
	    {
	      this->deallocate(this->_M_start, this->_M_end_of_storage 
			       - this->_M_start);
	    }
	}
#endif

	size_type
	size() const throw()
	{ return _M_finish - _M_start; }

	iterator
	begin() const throw()
	{ return this->_M_start; }

	iterator
	end() const throw()
	{ return this->_M_finish; }

	reference
	back() const throw()
	{ return *(this->end() - 1); }

	reference
	operator[](const size_type __pos) const throw()
	{ return this->_M_start[__pos]; }

	void
	insert(iterator __pos, const_reference __x);

	void
	push_back(const_reference __x)
	{
	  if (this->_M_space_left())
	    {
	      *this->end() = __x;
	      ++this->_M_finish;
	    }
	  else
	    this->insert(this->end(), __x);
	}

	void
	pop_back() throw()
	{ --this->_M_finish; }

	void
	erase(iterator __pos) throw();

	void
	clear() throw()
	{ this->_M_finish = this->_M_start; }
      };

    // Out of line function definitions.
    template<typename _Tp>
      void __mini_vector<_Tp>::
      insert(iterator __pos, const_reference __x)
      {
	if (this->_M_space_left())
	  {
	    size_type __to_move = this->_M_finish - __pos;
	    iterator __dest = this->end();
	    iterator __src = this->end() - 1;

	    ++this->_M_finish;
	    while (__to_move)
	      {
		*__dest = *__src;
		--__dest; --__src; --__to_move;
	      }
	    *__pos = __x;
	  }
	else
	  {
	    size_type __new_size = this->size() ? this->size() * 2 : 1;
	    iterator __new_start = this->allocate(__new_size);
	    iterator __first = this->begin();
	    iterator __start = __new_start;
	    while (__first != __pos)
	      {
		*__start = *__first;
		++__start; ++__first;
	      }
	    *__start = __x;
	    ++__start;
	    while (__first != this->end())
	      {
		*__start = *__first;
		++__start; ++__first;
	      }
	    if (this->_M_start)
	      this->deallocate(this->_M_start, this->size());

	    this->_M_start = __new_start;
	    this->_M_finish = __start;
	    this->_M_end_of_storage = this->_M_start + __new_size;
	  }
      }

    template<typename _Tp>
      void __mini_vector<_Tp>::
      erase(iterator __pos) throw()
      {
	while (__pos + 1 != this->end())
	  {
	    *__pos = __pos[1];
	    ++__pos;
	  }
	--this->_M_finish;
      }


    template<typename _Tp>
      struct __mv_iter_traits
      {
	typedef typename _Tp::value_type value_type;
	typedef typename _Tp::difference_type difference_type;
      };

    template<typename _Tp>
      struct __mv_iter_traits<_Tp*>
      {
	typedef _Tp value_type;
	typedef ptrdiff_t difference_type;
      };

    enum 
      { 
	bits_per_byte = 8,
	bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
      };

    template<typename _ForwardIterator, typename _Tp, typename _Compare>
      _ForwardIterator
      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
		    const _Tp& __val, _Compare __comp)
      {
	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
	  _ValueType;
	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
	  _DistanceType;

	_DistanceType __len = __last - __first;
	_DistanceType __half;
	_ForwardIterator __middle;

	while (__len > 0)
	  {
	    __half = __len >> 1;
	    __middle = __first;
	    __middle += __half;
	    if (__comp(*__middle, __val))
	      {
		__first = __middle;
		++__first;
		__len = __len - __half - 1;
	      }
	    else
	      __len = __half;
	  }
	return __first;
      }

    template<typename _InputIterator, typename _Predicate>
      inline _InputIterator
      __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
      {
	while (__first != __last && !__p(*__first))
	  ++__first;
	return __first;
      }

    /** @brief The number of Blocks pointed to by the address pair
     *  passed to the function.
     */
    template<typename _AddrPair>
      inline size_t
      __num_blocks(_AddrPair __ap)
      { return (__ap.second - __ap.first) + 1; }

    /** @brief The number of Bit-maps pointed to by the address pair
     *  passed to the function.
     */
    template<typename _AddrPair>
      inline size_t
      __num_bitmaps(_AddrPair __ap)
      { return __num_blocks(__ap) / size_t(bits_per_block); }

    // _Tp should be a pointer type.
    template<typename _Tp>
      class _Inclusive_between 
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
      {
	typedef _Tp pointer;
	pointer _M_ptr_value;
	typedef typename std::pair<_Tp, _Tp> _Block_pair;
	
      public:
	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
	{ }
	
	bool 
	operator()(_Block_pair __bp) const throw()
	{
	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
	    return true;
	  else
	    return false;
	}
      };
  
    // Used to pass a Functor to functions by reference.
    template<typename _Functor>
      class _Functor_Ref 
      : public std::unary_function<typename _Functor::argument_type, 
				   typename _Functor::result_type>
      {
	_Functor& _M_fref;
	
      public:
	typedef typename _Functor::argument_type argument_type;
	typedef typename _Functor::result_type result_type;

	_Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
	{ }

	result_type 
	operator()(argument_type __arg) 
	{ return _M_fref(__arg); }
      };

    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  The class which acts as a predicate for applying the
     *  first-fit memory allocation policy for the bitmap allocator.
     */
    // _Tp should be a pointer type, and _Alloc is the Allocator for
    // the vector.
    template<typename _Tp>
      class _Ffit_finder 
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
      {
	typedef typename std::pair<_Tp, _Tp> _Block_pair;
	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
	typedef typename _BPVector::difference_type _Counter_type;

	size_t* _M_pbitmap;
	_Counter_type _M_data_offset;

      public:
	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
	{ }

	bool 
	operator()(_Block_pair __bp) throw()
	{
	  // Set the _rover to the last physical location bitmap,
	  // which is the bitmap which belongs to the first free
	  // block. Thus, the bitmaps are in exact reverse order of
	  // the actual memory layout. So, we count down the bitmaps,
	  // which is the same as moving up the memory.

	  // If the used count stored at the start of the Bit Map headers
	  // is equal to the number of Objects that the current Block can
	  // store, then there is definitely no space for another single
	  // object, so just return false.
	  _Counter_type __diff = 
	    __gnu_cxx::__detail::__num_bitmaps(__bp);

	  if (*(reinterpret_cast<size_t*>
		(__bp.first) - (__diff + 1))
	      == __gnu_cxx::__detail::__num_blocks(__bp))
	    return false;

	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;

	  for (_Counter_type __i = 0; __i < __diff; ++__i)
	    {
	      _M_data_offset = __i;
	      if (*__rover)
		{
		  _M_pbitmap = __rover;
		  return true;
		}
	      --__rover;
	    }
	  return false;
	}

    
	size_t*
	_M_get() const throw()
	{ return _M_pbitmap; }

	_Counter_type
	_M_offset() const throw()
	{ return _M_data_offset * size_t(bits_per_block); }
      };


    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  The bitmap counter which acts as the bitmap
     *  manipulator, and manages the bit-manipulation functions and
     *  the searching and identification functions on the bit-map.
     */
    // _Tp should be a pointer type.
    template<typename _Tp>
      class _Bitmap_counter
      {
	typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
	_BPVector;
	typedef typename _BPVector::size_type _Index_type;
	typedef _Tp pointer;
    
	_BPVector& _M_vbp;
	size_t* _M_curr_bmap;
	size_t* _M_last_bmap_in_block;
	_Index_type _M_curr_index;
    
      public:
	// Use the 2nd parameter with care. Make sure that such an
	// entry exists in the vector before passing that particular
	// index to this ctor.
	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
	{ this->_M_reset(__index); }
    
	void 
	_M_reset(long __index = -1) throw()
	{
	  if (__index == -1)
	    {
	      _M_curr_bmap = 0;
	      _M_curr_index = static_cast<_Index_type>(-1);
	      return;
	    }

	  _M_curr_index = __index;
	  _M_curr_bmap = reinterpret_cast<size_t*>
	    (_M_vbp[_M_curr_index].first) - 1;
	  
	  _GLIBCXX_DEBUG_ASSERT(__index <= (lo°0��±0��²0��³0��´0��µ0��¶0��·0��¸0��¹0��º0��»0��¼0��½0��¾0��¿0��À0��Á0��Â0��Ã0����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ng)_M_vbp.size() - 1);
	
	  _M_last_bmap_in_block = _M_curr_bmap
	    - ((_M_vbp[_M_curr_index].second 
		- _M_vbp[_M_curr_index].first + 1) 
	       / size_t(bits_per_block) - 1);
	}
    
	// Dangerous Function! Use with extreme care. Pass to this
	// function ONLY those values that are known to be correct,
	// otherwise this will mess up big time.
	void
	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
	{ _M_curr_bmap = __new_internal_marker; }
    
	bool
	_M_finished() const throw()
	{ return(_M_curr_bmap == 0); }
    
	_Bitmap_counter&
	operator++() throw()
	{
	  if (_M_curr_bmap == _M_last_bmap_in_block)
	    {
	      if (++_M_curr_index == _M_vbp.size())
		_M_curr_bmap = 0;
	      else
		this->_M_reset(_M_curr_index);
	    }
	  else
	    --_M_curr_bmap;
	  return *this;
	}
    
	size_t*
	_M_get() const throw()
	{ return _M_curr_bmap; }
    
	pointer 
	_M_base() const throw()
	{ return _M_vbp[_M_curr_index].first; }

	_Index_type
	_M_offset() const throw()
	{
	  return size_t(bits_per_block)
	    * ((reinterpret_cast<size_t*>(this->_M_base()) 
		- _M_curr_bmap) - 1);
	}
    
	_Index_type
	_M_where() const throw()
	{ return _M_curr_index; }
      };

    /** @brief  Mark a memory address as allocated by re-setting the
     *  corresponding bit in the bit-map.
     */
    inline void 
    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
    {
      size_t __mask = 1 << __pos;
      __mask = ~__mask;
      *__pbmap &= __mask;
    }
  
    /** @brief  Mark a memory address as free by setting the
     *  corresponding bit in the bit-map.
     */
    inline void 
    __bit_free(size_t* __pbmap, size_t __pos) throw()
    {
      size_t __mask = 1 << __pos;
      *__pbmap |= __mask;
    }
  } // namespace __detail

  /** @brief  Generic Version of the bsf instruction.
   */
  inline size_t 
  _Bit_scan_forward(size_t __num)
  { return static_cast<size_t>(__builtin_ctzl(__num)); }

  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
   *
   *  @brief  The free list class for managing chunks of memory to be
   *  given to and returned by the bitmap_allocator.
   */
  class free_list
  {
    typedef size_t* 				value_type;
    typedef __detail::__mini_vector<value_type> vector_type;
    typedef vector_type::iterator 		iterator;
    typedef __mutex				__mutex_type;

    struct _LT_pointer_compare
    {
      bool
      operator()(const size_t* __pui, 
		 const size_t __cui) const throw()
      { return *__pui < __cui; }
    };

#if defined __GTHREADS
    __mutex_type&
    _M_get_mutex()
    {
      static __mutex_type _S_mutex;
      return _S_mutex;
    }
#endif

    vector_type&
    _M_get_free_list()
    {
      static vector_type _S_free_list;
      return _S_free_list;
    }

    /** @brief  Performs validation of memory based on their size.
     *
     *  @param  __addr The pointer to the memory block to be
     *  validated.
     *
     *  @detail  Validates the memory block passed to this function and
     *  appropriately performs the action of managing the free list of
     *  blocks by adding this block to the free list or deleting this
     *  or larger blocks from the free list.
     */
    void
    _M_validate(size_t* __addr) throw()
    {
      vector_type& __free_list = _M_get_free_list();
      const vector_type::size_type __max_size = 64;
      if (__free_list.size() >= __max_size)
	{
	  // Ok, the threshold value has been reached.  We determine
	  // which block to remove from the list of free blocks.
	  if (*__addr >= *__free_list.back())
	    {
	      // Ok, the new block is greater than or equal to the
	      // last block in the list of free blocks. We just free
	      // the new block.
	      ::operator delete(static_cast<void*>(__addr));
	      return;
	    }
	  else
	    {
	      // Deallocate the last block in the list of free lists,
	      // and insert the new one in its correct position.
	      ::operator delete(static_cast<void*>(__free_list.back()));
	      __free_list.pop_back();
	    }
	}
	  
      // Just add the block to the list of free lists unconditionally.
      iterator __temp = __gnu_cxx::__detail::__lower_bound
	(__free_list.begin(), __free_list.end(), 
	 *__addr, _LT_pointer_compare());

      // We may insert the new free list before _temp;
      __free_list.insert(__temp, __addr);
    }

    /** @brief  Decides whether the wastage of memory is acceptable for
     *  the current memory request and returns accordingly.
     *
     *  @param __block_size The size of the block available in the free
     *  list.
     *
     *  @param __required_size The required size of the memory block.
     *
     *  @return true if the wastage incurred is acceptable, else returns
     *  false.
     */
    bool 
    _M_should_i_give(size_t __block_size, 
		     size_t __required_size) throw()
    {
      const size_t __max_wastage_percentage = 36;
      if (__block_size >= __required_size && 
	  (((__block_size - __required_size) * 100 / __block_size)
	   < __max_wastage_percentage))
	return true;
      else
	return false;
    }

  public:
    /** @brief This function returns the block of memory to the
     *  internal free list.
     *
     *  @param  __addr The pointer to the memory block that was given
     *  by a call to the _M_get function.
     */
    inline void 
    _M_insert(size_t* __addr) throw()
    {
#if defined __GTHREADS
      __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
#endif
      // Call _M_validate to decide what should be done with
      // this particular free list.
      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
      // See discussion as to why this is 1!
    }
    
    /** @brief  This function gets a block of memory of the specified
     *  size from the free list.
     *
     *  @param  __sz The size in bytes of the memory required.
     *
     *  @return  A pointer to the new memory block of size at least
     *  equal to that requested.
     */
    size_t*
    _M_get(size_t __sz) throw(std::bad_alloc);

    /** @brief  This function just clears the internal Free List, and
     *  gives back all the memory to the OS.
     */
    void 
    _M_clear();
  };


  // Forward declare the class.
  template<typename _Tp> 
    class bitmap_allocator;

  // Specialize for void:
  template<>
    class bitmap_allocator<void>
    {
    public:
      typedef void*       pointer;
      typedef const void* const_pointer;

      // Reference-to-void members are impossible.
      typedef void  value_type;
      template<typename _Tp1>
        struct rebind
	{
	  typedef bitmap_allocator<_Tp1> other;
	};
    };

  /// Primary template
  template<typename _Tp>
    class bitmap_allocator : private free_list
    {
    public:
      typedef size_t    		size_type;
      typedef ptrdiff_t 		difference_type;
      typedef _Tp*        		pointer;
      typedef const _Tp*  		const_pointer;
      typedef _Tp&        		reference;
      typedef const _Tp&  		const_reference;
      typedef _Tp         		value_type;
      typedef free_list::__mutex_type 	__mutex_type;

      template<typename _Tp1>
        struct rebind
	{
	  typedef bitmap_allocator<_Tp1> other;
	};

    private:
      template<size_t _BSize, size_t _AlignSize>
        struct aligned_size
	{
	  enum
	    { 
	      modulus = _BSize % _AlignSize,
	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
	    };
	};

      struct _Alloc_block
      {
	char __M_unused[aligned_size<sizeof(value_type),
			_BALLOC_ALIGN_BYTES>::value];
      };


      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;

      typedef typename 
      __detail::__mini_vector<_Block_pair> _BPVector;

#if defined _GLIBCXX_DEBUG
      // Complexity: O(lg(N)). Where, N is the number of block of size
      // sizeof(value_type).
      void 
      _S_check_for_free_blocks() throw()
      {
	typedef typename 
	  __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
	_FFF __fff;
	typedef typename _BPVector::iterator _BPiter;
	_BPiter __bpi = 
	  __gnu_cxx::__detail::__find_if
	  (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
	   __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));

	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
      }
#endif

      /** @brief  Responsible for exponentially growing the internal
       *  memory pool.
       *
       *  @throw  std::bad_alloc. If memory can not be allocated.
       *
       *  @detail  Complexity: O(1), but internally depends upon the
       *  complexity of the function free_list::_M_get. The part where
       *  the bitmap headers are written has complexity: O(X),where X
       *  is the number of blocks of size sizeof(value_type) within
       *  the newly acquired block. Having a tight bound.
       */
      void 
      _S_refill_pool() throw(std::bad_alloc)
      {
#if defined _GLIBCXX_DEBUG
	_S_check_for_free_blocks();
#endif

	const size_t __num_bitmaps = (_S_block_size
				      / size_t(__detail::bits_per_block));
	const size_t __size_to_allocate = sizeof(size_t) 
	  + _S_block_size * sizeof(_Alloc_block) 
	  + __num_bitmaps * sizeof(size_t);

	size_t* __temp = 
	  reinterpret_cast<size_t*>
	  (this->_M_get(__size_to_allocate));
	*__temp = 0;
	++__temp;

	// The Header information goes at the Beginning of the Block.
	_Block_pair __bp = 
	  std::make_pair(reinterpret_cast<_Alloc_block*>
			 (__temp + __num_bitmaps), 
			 reinterpret_cast<_Alloc_block*>
			 (__temp + __num_bitmaps) 
			 + _S_block_size - 1);
	
	// Fill the Vector with this information.
	_S_mem_blocks.push_back(__bp);

	size_t __bit_mask = 0; // 0 Indicates all Allocated.
	__bit_mask = ~__bit_mask; // 1 Indicates all Free.

	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
	  __temp[__i] = __bit_mask;

	_S_block_size *= 2;
      }


      static _BPVector _S_mem_blocks;
      static size_t _S_block_size;
      static __gnu_cxx::__detail::
      _Bitmap_counter<_Alloc_block*> _S_last_request;
      static typename _BPVector::size_type _S_last_dealloc_index;
#if defined __GTHREADS
      static __mutex_type _S_mut;
#endif

    public:

      /** @brief  Allocates memory for a single object of size
       *  sizeof(_Tp).
       *
       *  @throw  std::bad_alloc. If memory can not be allocated.
       *
       *  @detail  Complexity: Worst case complexity is O(N), but that
       *  is hardly ever hit. If and when this particular case is
       *  encountered, the next few cases are guaranteed to have a
       *  worst case complexity of O(1)!  That's why this function
       *  performs very well on average. You can consider this
       *  function to have a complexity referred to commonly as:
       *  Amortized Constant time.
       */
      pointer 
      _M_allocate_single_object() throw(std::bad_alloc)
      {
#if defined __GTHREADS
	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
#endif

	// The algorithm is something like this: The last_request
	// variable points to the last accessed Bit Map. When such a
	// condition occurs, we try to find a free block in the
	// current bitmap, or succeeding bitmaps until the last bitmap
	// is reached. If no free block turns up, we resort to First
	// Fit method.

	// WARNING: Do not re-order the condition in the while
	// statement below, because it relies on C++'s short-circuit
	// evaluation. The return from _S_last_request->_M_get() will
	// NOT be dereference able if _S_last_request->_M_finished()
	// returns true. This would inevitably lead to a NULL pointer
	// dereference if tinkered with.
	while (_S_last_request._M_finished() == false
	       && (*(_S_last_request._M_get()) == 0))
	  {
	    _S_last_request.operator++();
	  }

	if (__builtin_expect(_S_last_request._M_finished() == true, false))
	  {
	    // Fall Back to First Fit algorithm.
	    typedef typename 
	      __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
	    _FFF __fff;
	    typedef typename _BPVector::iterator _BPiter;
	    _BPiter __bpi = 
	      __gnu_cxx::__detail::__find_if
	      (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
	       __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));

	    if (__bpi != _S_mem_blocks.end())
	      {
		// Search was successful. Ok, now mark the first bit from
		// the right as 0, meaning Allocated. This bit is obtained
		// by calling _M_get() on __fff.
		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
		__detail::__bit_allocate(__fff._M_get(), __nz_bit);

		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());

		// Now, get the address of the bit we marked as allocated.
		pointer __ret = reinterpret_cast<pointer>
		  (__bpi->first + __fff._M_offset() + __nz_bit);
		size_t* __puse_count = 
		  reinterpret_cast<size_t*>
		  (__bpi->first) 
		  - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
		
		++(*__puse_count);
		return __ret;
	      }
	    else
	      {
		// Search was unsuccessful. We Add more memory to the
		// pool by calling _S_refill_pool().
		_S_refill_pool();

		// _M_Reset the _S_last_request structure to the first
		// free block's bit map.
		_S_last_request._M_reset(_S_mem_blocks.size() - 1);

		// Now, mark that bit as allocated.
	      }
	  }

	// _S_last_request holds a pointer to a valid bit map, that
	// points to a free block in memory.
	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);

	pointer __ret = reinterpret_cast<pointer>
	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);

	size_t* __puse_count = reinterpret_cast<size_t*>
	  (_S_mem_blocks[_S_last_request._M_where()].first)
	  - (__gnu_cxx::__detail::
	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);

	++(*__puse_count);
	return __ret;
      }

      /** @brief  Deallocates memory that belongs to a single object of
       *  size sizeof(_Tp).
       *
       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
       *  often!  This is because containers usually deallocate memory
       *  close to each other and this case is handled in O(1) time by
       *  the deallocate function.
       */
      void 
      _M_deallocate_single_object(pointer __p) throw()
      {
#if defined __GTHREADS
	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
#endif
	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);

	typedef typename _BPVector::iterator _Iterator;
	typedef typename _BPVector::difference_type _Difference_type;

	_Difference_type __diff;
	long __displacement;

	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);

	
	if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
	    (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
	  {
	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
				  <= _S_mem_blocks.size() - 1);

	    // Initial Assumption was correct!
	    __diff = _S_last_dealloc_index;
	    __displacement = __real_p - _S_mem_blocks[__diff].first;
	  }
	else
	  {
	    _Iterator _iter = __gnu_cxx::__detail::
	      __find_if(_S_mem_blocks.begin(), 
			_S_mem_blocks.end(), 
			__gnu_cxx::__detail::
			_Inclusive_between<_Alloc_block*>(__real_p));

	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());

	    __diff = _iter - _S_mem_blocks.begin();
	    __displacement = __real_p - _S_mem_blocks[__diff].first;
	    _S_last_dealloc_index = __diff;
	  }

	// Get the position of the iterator that has been found.
	const size_t __rotate = (__displacement
				 % size_t(__detail::bits_per_block));
	size_t* __bitmapC = 
	  reinterpret_cast<size_t*>
	  (_S_mem_blocks[__diff].first) - 1;
	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
      
	__detail::__bit_free(__bitmapC, __rotate);
	size_t* __puse_count = reinterpret_cast<size_t*>
	  (_S_mem_blocks[__diff].first)
	  - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
	
	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);

	--(*__puse_count);

	if (__builtin_expect(*__puse_count == 0, false))
	  {
	    _S_block_size /= 2;
	  
	    // We can safely remove this block.
	    // _Block_pair __bp = _S_mem_blocks[__diff];
	    this->_M_insert(__puse_count);
	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);

	    // Reset the _S_last_request variable to reflect the
	    // erased block. We do this to protect future requests
	    // after the last block has been removed from a particular
	    // memory Chunk, which in turn has been returned to the
	    // free list, and hence h