// Special functions -*- C++ -*- // Copyright (C) 2006, 2007, 2008 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/riemann_zeta.tcc * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ // // ISO C++ 14882 TR1: 5.2 Special functions // // Written by Edward Smith-Rowland based on: // (1) Handbook of Mathematical Functions, // Ed. by Milton Abramowitz and Irene A. Stegun, // Dover Publications, New-York, Section 5, pp. 807-808. // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl // (3) Gamma, Exploring Euler's Constant, Julian Havil, // Princeton, 2003. #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1 #include "special_function_util.h" namespace std { namespace tr1 { // [5.2] Special functions // Implementation-space details. namespace __detail { /** * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ * by summation for s > 1. * * The Riemann zeta function is defined by: * \f[ * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 * \f] * For s < 1 use the reflection formula: * \f[ * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) * \f] */ template _Tp __riemann_zeta_sum(const _Tp __s) { // A user shouldn't get to this. if (__s < _Tp(1)) std::__throw_domain_error(__N("Bad argument in zeta sum.")); const unsigned int max_iter = 10000; _Tp __zeta = _Tp(0); for (unsigned int __k = 1; __k < max_iter; ++__k) { _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); if (__term < std::numeric_limits<_Tp>::epsilon()) { break; } __zeta += __term; } return __zeta; } /** * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$ * by an alternate series for s > 0. * * The Riemann zeta function is defined by: * \f[ * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 * \f] * For s < 1 use the reflection formula: * \f[ * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) * \f] */ template _Tp __riemann_zeta_alt(const _Tp __s) { _Tp __sgn = _Tp(1); _Tp __zeta = _Tp(0); for (unsigned int __i = 1; __i < 10000000; ++__i) { _Tp __term = __sgn / std::pow(__i, __s); if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) break; __zeta += __term; __sgn *= _Tp(-1); } __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); return __zeta; } /** * @brief Evaluate the Riemann zeta function by series for all s != 1. * Convergence is great until largish negative numbers. * Then the convergence of the > 0 sum gets better. * * The series is: * \f[ * \zeta(s) = \frac{1}{1-2^{1-s}} * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s} * \f] * Havil 2003, p. 206. * * The Riemann zeta function is defined by: * \f[ * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 * \f] * For s < 1 use the reflection formula: * \f[ * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) * \f] */ template _Tp __riemann_zeta_glob(const _Tp __s) { _Tp __zeta = _Tp(0); const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); // Max e exponent before overflow. const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 * std::log(_Tp(10)) - _Tp(1); // This series works until the binomial coefficient blows up // so use reflection. if (__s < _Tp(0)) { #if _GLIBCXX_USE_C99_MATH_TR1 if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0)) return _Tp(0); else #endif { _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s); __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) #if _GLIBCXX_USE_C99_MATH_TR1 * std::exp(std::tr1::lgamma(_Tp(1) - __s)) #else * std::exp(__log_gamma(_Tp(1) - __s)) #endif / __numeric_constants<_Tp>::__pi(); return __zeta; } } _Tp __num = _Tp(0.5L); const unsigned int __maxit = 10000; for (unsigned int __i = 0; __i < __maxit; ++__i) { bool __punt = false; _Tp __sgn = _Tp(1); _Tp __term = _Tp(0); for (unsigned int __j = 0; __j <= __i; ++__j) { #if _GLIBCXX_USE_C99_MATH_TR1 _Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i)) - std::tr1::lgamma(_Tp(1 + __j)) - std::tr1::lgamma(_Tp(1 + __i - __j)); #else _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) - __log_gamma(_Tp(1 + __j)) - __log_gamma(_Tp(1 + __i - __j)); #endif if (__bincoeff > __max_bincoeff) { // This only gets hit for x << 0. __punt = true; break; } __bincoeff = std::exp(__bincoeff); __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); __sgn *= _Tp(-1); } if (__punt) break; __term *= __num; __zeta += __term; if (std::abs(__term/__zeta) < __eps) break; __num *= _Tp(0.5L); } __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); return __zeta; } /** * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ * using the product over prime factors. * \f[ * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}} * \f] * where @f$ {p_i} @f$ are the prime numbers. * * The Riemann zeta function is defined by: * \f[ * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 * \f] * For s < 1 use the reflection formula: * \f[ * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) * \f] */ template _Tp __riemann_zeta_product(const _Tp __s) { static const _Tp __prime[] = { _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19), _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47), _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79), _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109) }; static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp); _Tp __zeta = _Tp(1); for (unsigned int __i = 0; __i < __num_primes; ++__i) { const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); __zeta *= __fact; if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon()) break; } __zeta = _Tp(1) / __zeta; return __zeta; } /** * @brief Return the Riemann zeta function @f$ \zeta(s) @f$. * * The Riemann zeta function is defined by: * \f[ * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1 * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) * \Gamma (1 - s) \zeta (1 - s) for s < 1 * \f] * For s < 1 use the reflection formula: * \f[ * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) * \f] */ template _Tp __riemann_zeta(const _Tp __s) { if (__isnan(__s)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__s == _Tp(1)) return std::numeric_limits<_Tp>::infinity(); else if (__s < -_Tp(19)) { _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s); __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) #if _GLIBCXX_USE_C99_MATH_TR1 * std::exp(std::tr1::lgamma(_Tp(1) - __s)) #else * std::exp(__log_gamma(_Tp(1) - __s)) #endif / __numeric_constants<_Tp>::__pi(); return __zeta; } else if (__s < _Tp(20)) { // Global double sum or McLaurin? bool __glob = true; if (__glob) return __riemann_zeta_glob(__s); else { if (__s > _Tp(1)) return __riemann_zeta_sum(__s); else { _Tp __zeta = std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) #if _GLIBCXX_USE_C99_MATH_TR1 * std::tr1::tgamma(_Tp(1) - __s) #else * std::exp(__log_gamma(_Tp(1) - __s)) #endif * __riemann_zeta_sum(_Tp(1) - __s); return __zeta; } } } else return __riemann_zeta_product(__s); } /** * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ * for all s != 1 and x > -1. * * The Hurwitz zeta function is defined by: * @f[ * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} * @f] * The Riemann zeta function is a special case: * @f[ * \zeta(s) = \zeta(1,s) * @f] * * This functions uses the double sum that converges for s != 1 * and x > -1: * @f[ * \zeta(x,s) = \frac{1}{s-1} * \sum_{n=0}^{\infty} \frac{1}{n + 1} * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s} * @f] */ template _Tp __hurwitz_zeta_glob(const _Tp __a, const _Tp __s) { _Tp __zeta = _Tp(0); const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); // Max e exponent before overflow. const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 * std::log(_Tp(10)) - _Tp(1); const unsigned int __maxit = 10000; for (unsigned int __i = 0; __i < __maxit; ++__i) { bool __punt = false; _Tp __sgn = _Tp(1); _Tp __term = _Tp(0); for (unsigned int _Í,Î,_j = 0; __j <= __i; ++__j) { #if _GLIBCXX_USE_C99_MATH_TR1 _Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i)) - std::tr1::lgamma(_Tp(1 + __j)) - std::tr1::lgamma(_Tp(1 + __i - __j)); #else _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) - __log_gamma(_Tp(1 + __j)) - __log_gamma(_Tp(1 + __i - __j)); #endif if (__bincoeff > __max_bincoeff) { // This only gets hit for x << 0. __punt = true; break; } __bincoeff = std::exp(__bincoeff); __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); __sgn *= _Tp(-1); } if (__punt) break; __term /= _Tp(__i + 1); if (std::abs(__term / __zeta) < __eps) break; __zeta += __term; } __zeta /= __s - _Tp(1); return __zeta; } /** * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ * for all s != 1 and x > -1. * * The Hurwitz zeta function is defined by: * @f[ * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} * @f] * The Riemann zeta function is a special case: * @f[ * \zeta(s) = \zeta(1,s) * @f] */ template inline _Tp __hurwitz_zeta(const _Tp __a, const _Tp __s) { return __hurwitz_zeta_glob(__a, __s); } } // namespace std::tr1::__detail } } #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC // TR1 wctype.h -*- C++ -*- // Copyright (C) 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/wctype.h * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_WCTYPE_H #define _GLIBCXX_TR1_WCTYPE_H 1 #include #endif // _GLIBCXX_TR1_WCTYPE_H // TR1 utility -*- C++ -*- // Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/utility * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_UTILITY #define _GLIBCXX_TR1_UTILITY 1 #pragma GCC system_header #if defined(_GLIBCXX_INCLUDE_AS_CXX0X) # error TR1 header cannot be included from C++0x header #endif #include #include #include #if defined(_GLIBCXX_INCLUDE_AS_TR1) # include #else # define _GLIBCXX_INCLUDE_AS_TR1 # define _GLIBCXX_BEGIN_NAMESPACE_TR1 namespace tr1 { # define _GLIBCXX_END_NAMESPACE_TR1 } # define _GLIBCXX_TR1 tr1:: # include # undef _GLIBCXX_TR1 # undef _GLIBCXX_END_NAMESPACE_TR1 # undef _GLIBCXX_BEGIN_NAMESPACE_TR1 # undef _GLIBCXX_INCLUDE_AS_TR1 #endif #endif // _GLIBCXX_TR1_UTILITY // TR1 cfloat -*- C++ -*- // Copyright (C) 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/cfloat * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_CFLOAT #define _GLIBCXX_TR1_CFLOAT 1 #include #ifndef DECIMAL_DIG #define DECIMAL_DIG __DECIMAL_DIG__ #endif #ifndef FLT_EVAL_METHOD #define FLT_EVAL_METHOD __FLT_EVAL_METHOD__ #endif #endif //_GLIBCXX_TR1_CFLOAT // Special functions -*- C++ -*- // Copyright (C) 2006, 2007, 2008 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/hypergeometric.tcc * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ // // ISO C++ 14882 TR1: 5.2 Special functions // // Written by Edward Smith-Rowland based: // (1) Handbook of Mathematical Functions, // ed. Milton Abramowitz and Irene A. Stegun, // Dover Publications, // Section 6, pp. 555-566 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 namespace std { namespace tr1 { // [5.2] Special functions // Implementation-space details. namespace __detail { /** * @brief This routine returns the confluent hypergeometric function * by series expansion. * * @f[ * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * If a and b are integers and a < 0 and either b > 0 or b < a then the * series is a polynomial with a finite number of terms. If b is an integer * and b <= 0 the confluent hypergeometric function is undefined. * * @param __a The "numerator" parameter. * @param __c The "denominator" parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template _Tp __conf_hyperg_series(const _Tp __a, const _Tp __c, const _Tp __x) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); _Tp __term = _Tp(1); _Tp __Fac = _Tp(1); const unsigned int __max_iter = 100000; unsigned int __i; for (__i = 0; __i < __max_iter; ++__i) { __term *= (__a + _Tp(__i)) * __x / ((__c + _Tp(__i)) * _Tp(1 + __i)); if (std::abs(__term) < __eps) { break; } __Fac += __term; } if (__i == __max_iter) std::__throw_runtime_error(__N("Series failed to converge " "in __conf_hyperg_series.")); return __Fac; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by an iterative procedure described in * Luke, Algorithms for the Computation of Mathematical Functions. * * Like the case of the 2F1 rational approximations, these are * probably guaranteed to converge for x < 0, barring gross * numerical instability in the pre-asymptotic regime. */ template _Tp __conf_hyperg_luke(const _Tp __a, const _Tp __c, const _Tp __xin) { const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); const int __nmax = 20000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __x = -__xin; const _Tp __x3 = __x * __x * __x; const _Tp __t0 = __a / __c; const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); _Tp __F = _Tp(1); _Tp __prec; _Tp __Bnm3 = _Tp(1); _Tp __Bnm2 = _Tp(1) + __t1 * __x; _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); _Tp __Anm3 = _Tp(1); _Tp __Anm2 = __Bnm2 - __t0 * __x; _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; int __n = 3; while(1) { _Tp __npam1 = _Tp(__n - 1) + __a; _Tp __npcm1 = _Tp(__n - 1) + __c; _Tp __npam2 = _Tp(__n - 2) + __a; _Tp __npcm2 = _Tp(__n - 2) + __c; _Tp __tnm1 = _Tp(2 * __n - 1); _Tp __tnm3 = _Tp(2 * __n - 3); _Tp __tnm5 = _Tp(2 * __n - 5); _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); _Tp __F2 = (_Tp(__n) + __a) * __npam1 / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); _Tp __E = -__npam1 * (_Tp(__n - 1) - __c) / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; _Tp __r = __An / __Bn; __prec = std::abs((__F - __r) / __F); __F = __r; if (__prec < __eps || __n > __nmax) break; if (std::abs(__An) > __big || std::abs(__Bn) > __big) { __An /= __big; __Bn /= __big; __Anm1 /= __big; __Bnm1 /= __big; __Anm2 /= __big; __Bnm2 /= __big; __Anm3 /= __big; __Bnm3 /= __big; } else if (std::abs(__An) < _Tp(1) / __big || std::abs(__Bn) < _Tp(1) / __big) { __An *= __big; __Bn *= __big; __Anm1 *= __big; __Bnm1 *= __big; __Anm2 *= __big; __Bnm2 *= __big; __Anm3 *= __big; __Bnm3 *= __big; } ++__n; __Bnm3 = __Bnm2; __Bnm2 = __Bnm1; __Bnm1 = __Bn; __Anm3 = __Anm2; __Anm2 = __Anm1; __Anm1 = __An; } if (__n >= __nmax) std::__throw_runtime_error(__N("Iteration failed to converge " "in __conf_hyperg_luke.")); return __F; } /** * @brief Return the confluent hypogeometric function * @f$ _1F_1(a;c;x) @f$. * * @todo Handle b == nonpositive integer blowup - return NaN. * * @param __a The "numerator" parameter. * @param __c The "denominator" parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template inline _Tp __conf_hyperg(const _Tp __a, const _Tp __c, const _Tp __x) { #if _GLIBCXX_USE_C99_MATH_TR1 const _Tp __c_nint = std::tr1::nearbyint(__c); #else const _Tp __c_nint = static_cast(__c + _Tp(0.5L)); #endif if (__isnan(__a) || __isnan(__c) || __isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__c_nint == __c && __c_nint <= 0) return std::numeric_limits<_Tp>::infinity(); else if (__a == _Tp(0)) return _Tp(1); else if (__c == __a) return std::exp(__x); else if (__x < _Tp(0)) return __conf_hyperg_luke(__a, __c, __x); else return __conf_hyperg_series(__a, __c, __x); } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by series expansion. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * This works and it's pretty fast. * * @param __a The first "numerator" parameter. * @param __a The second "numerator" parameter. * @param __c The "denominator" parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template _Tp __hyperg_series(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); _Tp __term = _Tp(1); _Tp __Fabc = _Tp(1); const unsigned int __max_iter = 100000; unsigned int __i; for (__i = 0; __i < __max_iter; ++__i) { __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x / ((__c + _Tp(__i)) * _Tp(1 + __i)); if (std::abs(__term) < __eps) { break; } __Fabc += __term; } if (__i == __max_iter) std::__throw_runtime_error(__N("Series failed to converge " "in __hyperg_series.")); return __Fabc; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by an iterative procedure described in * Luke, Algorithms for the Computation of Mathematical Functions. */ template _Tp __hyperg_luke(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __xin) { const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); const int __nmax = 20000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __x = -__xin; const _Tp __x3 = __x * __x * __x; const _Tp __t0 = __a * __b / __c; const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); _Tp __F = _Tp(1); _Tp __Bnm3 = _Tp(1); _Tp __Bnm2 = _Tp(1) + __t1 * __x; _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); _Tp __Anm3 = _Tp(1); _Tp __Anm2 = __Bnm2 - __t0 * __x; _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; int __n = 3; while (1) { const _Tp __npam1 = _Tp(__n - 1) + __a; const _Tp __npbm1 = _Tp(__n - 1) + __b; const _Tp __npcm1 = _Tp(__n - 1) + __c; const _Tp __npam2 = _Tp(__n - 2) + __a; const _Tp __npbm2 = _Tp(__n - 2) + __b; const _Tp __npcm2 = _Tp(__n - 2) + __c; const _Tp __tnm1 = _Tp(2 * __n - 1); const _Tp __tnm3 = _Tp(2 * __n - 3); const _Tp __tnm5 = _Tp(2 * __n - 5); const _Tp __n2 = __n * __n; const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) / (_Tp(2) * __tnm3 * __npcm1); const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n + _Tp(2) - __a * __b) * __npam1 * __npbm1 ã,ä,å,æ,ç,è,é,ê,ë,ì,í,î,ï,ð,ñ,ò, / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; const _Tp __r = __An / __Bn; const _Tp __prec = std::abs((__F - __r) / __F); __F = __r; if (__prec < __eps || __n > __nmax) break; if (std::abs(__An) > __big || std::abs(__Bn) > __big) { __An /= __big; __Bn /= __big; __Anm1 /= __big; __Bnm1 /= __big; __Anm2 /= __big; __Bnm2 /= __big; __Anm3 /= __big; __Bnm3 /= __big; } else if (std::abs(__An) < _Tp(1) / __big || std::abs(__Bn) < _Tp(1) / __big) { __An *= __big; __Bn *= __big; __Anm1 *= __big; __Bnm1 *= __big; __Anm2 *= __big; __Bnm2 *= __big; __Anm3 *= __big; __Bnm3 *= __big; } ++__n; __Bnm3 = __Bnm2; __Bnm2 = __Bnm1; __Bnm1 = __Bn; __Anm3 = __Anm2; __Anm2 = __Anm1; __Anm1 = __An; } if (__n >= __nmax) std::__throw_runtime_error(__N("Iteration failed to converge " "in __hyperg_luke.")); return __F; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ by the reflection * formulae in Abramowitz & Stegun formula 15.3.6 for d = c - a - b not integral * and formula 15.3.11 for d = c - a - b integral. * This assumes a, b, c != negative integer. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * The reflection formula for nonintegral @f$ d = c - a - b @f$ is: * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} * _2F_1(a,b;1-d;1-x) * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} * _2F_1(c-a,c-b;1+d;1-x) * @f] * * The reflection formula for integral @f$ m = c - a - b @f$ is: * @f[ * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} * - * @f] */ template _Tp __hyperg_reflect(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x) { const _Tp __d = __c - __a - __b; const int __intd = std::floor(__d + _Tp(0.5L)); const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __toler = _Tp(1000) * __eps; const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); const bool __d_integer = (std::abs(__d - __intd) < __toler); if (__d_integer) { const _Tp __ln_omx = std::log(_Tp(1) - __x); const _Tp __ad = std::abs(__d); _Tp __F1, __F2; _Tp __d1, __d2; if (__d >= _Tp(0)) { __d1 = __d; __d2 = _Tp(0); } else { __d1 = _Tp(0); __d2 = __d; } const _Tp __lng_c = __log_gamma(__c); // Evaluate F1. if (__ad < __eps) { // d = c - a - b = 0. __F1 = _Tp(0); } else { bool __ok_d1 = true; _Tp __lng_ad, __lng_ad1, __lng_bd1; try { __lng_ad = __log_gamma(__ad); __lng_ad1 = __log_gamma(__a + __d1); __lng_bd1 = __log_gamma(__b + __d1); } catch(...) { __ok_d1 = false; } if (__ok_d1) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ _Tp __sum1 = _Tp(1); _Tp __term = _Tp(1); _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx - __lng_ad1 - __lng_bd1; /* Do F1 sum. */ for (int __i = 1; __i < __ad; ++__i) { const int __j = __i - 1; __term *= (__a + __d2 + __j) * (__b + __d2 + __j) / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); __sum1 += __term; } if (__ln_pre1 > __log_max) std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_luke.")); else __F1 = std::exp(__ln_pre1) * __sum1; } else { // Gamma functions in the denominator were not ok. // So the F1 term is zero. __F1 = _Tp(0); } } // end F1 evaluation // Evaluate F2. bool __ok_d2 = true; _Tp __lng_ad2, __lng_bd2; try { __lng_ad2 = __log_gamma(__a + __d2); __lng_bd2 = __log_gamma(__b + __d2); } catch(...) { __ok_d2 = false; } if (__ok_d2) { // Gamma functions in the denominator are ok. // Proceed with evaluation. const int __maxiter = 2000; const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); const _Tp __psi_1pd = __psi(_Tp(1) + __ad); const _Tp __psi_apd1 = __psi(__a + __d1); const _Tp __psi_bpd1 = __psi(__b + __d1); _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 - __psi_bpd1 - __ln_omx; _Tp __fact = _Tp(1); _Tp __sum2 = __psi_term; _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx - __lng_ad2 - __lng_bd2; // Do F2 sum. int __j; for (__j = 1; __j < __maxiter; ++__j) { // Values for psi functions use recurrence; Abramowitz & Stegun 6.3.5 const _Tp __term1 = _Tp(1) / _Tp(__j) + _Tp(1) / (__ad + __j); const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); __psi_term += __term1 - __term2; __fact *= (__a + __d1 + _Tp(__j - 1)) * (__b + __d1 + _Tp(__j - 1)) / ((__ad + __j) * __j) * (_Tp(1) - __x); const _Tp __delta = __fact * __psi_term; __sum2 += __delta; if (std::abs(__delta) < __eps * std::abs(__sum2)) break; } if (__j == __maxiter) std::__throw_runtime_error(__N("Sum F2 failed to converge " "in __hyperg_reflect")); if (__sum2 == _Tp(0)) __F2 = _Tp(0); else __F2 = std::exp(__ln_pre2) * __sum2; } else { // Gamma functions in the denominator not ok. // So the F2 term is zero. __F2 = _Tp(0); } // end F2 evaluation const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); const _Tp __F = __F1 + __sgn_2 * __F2; return __F; } else { // d = c - a - b not an integer. // These gamma functions appear in the denominator, so we // catch their harmless domain errors and set the terms to zero. bool __ok1 = true; _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); try { __sgn_g1ca = __log_gamma_sign(__c - __a); __ln_g1ca = __log_gamma(__c - __a); __sgn_g1cb = __log_gamma_sign(__c - __b); __ln_g1cb = __log_gamma(__c - __b); } catch(...) { __ok1 = false; } bool __ok2 = true; _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); try { __sgn_g2a = __log_gamma_sign(__a); __ln_g2a = __log_gamma(__a); __sgn_g2b = __log_gamma_sign(__b); __ln_g2b = __log_gamma(__b); } catch(...) { __ok2 = false; } const _Tp __sgn_gc = __log_gamma_sign(__c); const _Tp __ln_gc = __log_gamma(__c); const _Tp __sgn_gd = __log_gamma_sign(__d); const _Tp __ln_gd = __log_gamma(__d); const _Tp __sgn_gmd = __log_gamma_sign(-__d); const _Tp __ln_gmd = __log_gamma(-__d); const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb; const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b; _Tp __pre1, __pre2; if (__ok1 && __ok2) { _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b + __d * std::log(_Tp(1) - __x); if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) { __pre1 = std::exp(__ln_pre1); __pre2 = std::exp(__ln_pre2); __pre1 *= __sgn1; __pre2 *= __sgn2; } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else if (__ok1 && !__ok2) { _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; if (__ln_pre1 < __log_max) { __pre1 = std::exp(__ln_pre1); __pre1 *= __sgn1; __pre2 = _Tp(0); } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else if (!__ok1 && __ok2) { _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b + __d * std::log(_Tp(1) - __x); if (__ln_pre2 < __log_max) { __pre1 = _Tp(0); __pre2 = std::exp(__ln_pre2); __pre2 *= __sgn2; } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else { __pre1 = _Tp(0); __pre2 = _Tp(0); std::__throw_runtime_error(__N("Underflow of gamma functions " "in __hyperg_reflect")); } const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, _Tp(1) - __x); const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, _Tp(1) - __x); const _Tp __F = __pre1 * __F1 + __pre2 * __F2; return __F; } } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * @param __a The first "numerator" parameter. * @param __a The second "numerator" parameter. * @param __c The "denominator" parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template inline _Tp __hyperg(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x) { #if _GLIBCXX_USE_C99_MATH_TR1 const _Tp __a_nint = std::tr1::nearbyint(__a); const _Tp __b_nint = std::tr1::nearbyint(__b); const _Tp __c_nint = std::tr1::nearbyint(__c); #else const _Tp __a_nint = static_cast(__a + _Tp(0.5L)); const _Tp __b_nint = static_cast(__b + _Tp(0.5L)); const _Tp __c_nint = static_cast(__c + _Tp(0.5L)); #endif const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); if (std::abs(__x) >= _Tp(1)) std::__throw_domain_error(__N("Argument outside unit circle " "in __hyperg.")); else if (__isnan(__a) || __isnan(__b) || __isnan(__c) || __isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__c_nint == __c && __c_nint <= _Tp(0)) return std::numeric_limits<_Tp>::infinity(); else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) return std::pow(_Tp(1) - __x, __c - __a - __b); else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) && __x >= _Tp(0) && __x < _Tp(0.995L)) return __hyperg_series(__a, __b, __c, __x); else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) { // For integer a and b the hypergeometric function is a finite polynomial. if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler) return __hyperg_series(__a_nint, __b, __c, __x); else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler) return __hyperg_series(__a, __b_nint, __c, __x); else if (__x < -_Tp(0.25L)) return __hyperg_luke(__a, __b, __c, __x); else if (__x < _Tp(0.5L)) return __hyperg_series(__a, __b, __c, __x); else if (std::abs(__c) > _Tp(10)) return __hyperg_series(__a, __b, __c, __x); else return __hyperg_reflect(__a, __b, __c, __x); } else return __hyperg_luke(__a, __b, __c, __x); } } // namespace std::tr1::__detail } } #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC // -*- C++ -*- // Copyright (C) 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // shared_count.hpp // Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd. // shared_ptr.hpp // Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes. // Copyright (C) 2001, 2002, 2003 Peter Dimov // weak_ptr.hpp // Copyright (C) 2001, 2002, 2003 Peter Dimov // enable_shared_from_this.hpp // Copyright (C) 2002 Peter Dimov // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // GCC Note: based on version 1.32.0 of the Boost library. /** @file tr1/boost_sp_shared_count.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #if defined(_GLIBCXX_INCLUDE_AS_CXX0X) # error TR1 header cannot be included from C++0x header #endif namespace std { namespace tr1 { template class _Sp_counted_base_impl : public _Sp_counted_base<_Lp> { public: /** * @brief * @pre __d(__p) must not throw. */ _Sp_counted_base_impl(_Ptr __p, _Deleter __d) : _M_ptr(__p), _M_del(__d) { } virtual void _M_dispose() // nothrow { _M_del(_M_ptr); } virtual void* _M_get_deleter(const std::type_info& __ti) { return __ti == typeid(_Deleter) ? &_M_del : 0; } private: _Sp_counted_base_impl(const _Sp_counted_base_impl&); _Sp_counted_base_impl& operator=(const _Sp_counted_base_impl&); _Ptr _M_ptr; // copy constructor must not throw _Deleter _M_del; // copy constructor must not throw }; template<_Lock_policy _Lp = __default_lock_policy> class __weak_count; template struct _Sp_deleter { typedef void result_type; typedef _Tp* argument_type; void operator()(_Tp* __p) const { delete __p; } }; template<_Lock_policy _Lp = __default_lock_policy> class __shared_count { public: __shared_count() : _M_pi(0) // nothrow { } template __shared_count(_Ptr __p) : _M_pi(0) { try { typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp; _M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>( __p, _Sp_deleter<_Tp>()); } catch(...) { delete __p; __throw_exception_again; } } template __shared_count(_Ptr __p, _Deleter __d) : _M_pi(0) { try { _M_pi = new _Sp_counted_base_impl<_Ptr, _Deleter, _Lp>(__p, __d); } catch(...) { __d(__p); // Call _Deleter on __p. __throw_exception_again; } } // Special case for auto_ptr<_Tp> to provide the strong guarantee. template explicit __shared_count(std::auto_ptr<_Tp>& __r) : _M_pi(new _Sp_counted_base_impl<_Tp*, _Sp_deleter<_Tp>, _Lp >(__r.get(), _Sp_deleter<_Tp>())) { __r.release(); } // Throw bad_weak_ptr when __r._M_get_use_count() == 0. explicit __shared_count(const __weak_count<_Lp>& __r); ~__shared_count() // nothrow { if (_M_pi != 0) _M_pi->_M_release(); } __shared_count(const __shared_count& __r) : _M_pi(__r._M_pi) // nothrow { if (_M_pi != 0) _M_pi->_M_add_ref_copy(); } __shared_count& operator=(const __shared_count& __r) // nothrow { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; if (__tmp != _M_pi) { if (__tmp != 0) __tmp->_M_add_ref_copy(); if (_M_pi != 0) _M_pi->_M_release(); _M_pi = __tmp; } return *this; } void _M_swap(__shared_count& __r) // nothrow { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; __r._M_pi = _M_pi; _M_pi = __tmp; } long _M_get_use_count() const // nothrow { return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0; } bool _M_unique() const // nothrow { return this->_M_get_use_count() == 1; } friend inline bool operator==(const __shared_count& __a, const __shared_count& __b) { return __a._M_pi == __b._M_pi; } friend inline bool operator<(const __shared_count& __a, const __shared_count& __b) { return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi); } void* _M_get_deleter(const std::type_info& __ti) const { return _M_pi ? _M_pi->_M_get_deleter(__ti) : 0; } private: friend class __weak_count<_Lp>; _Sp_counted_base<_Lp>* _M_pi; }; } } // TR1 climits -*- C++ -*- // Copyright (C) 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/climits * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_CLIMITS #define _GLIBCXX_TR1_CLIMITS 1 #include #ifndef LLONG_MIN #define LLONG_MIN -__LONG_LONG_MAX__ - 1 #endif #ifndef LLONG_MAX #define LLONG_MAX __LONG_LONG_MAX__ #endif #ifndef ULLONG_MAX #define ULLONG_MAX __LONG_LONG_MAX__ * 2ULL + 1 #endif #endif // _GLIBCXX_TR1_CLIMITS // TR1 stdbool.h -*- C++ -*- // Copyright (C) 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/stdbool.h * This is a TR1 C++ Library header. */ #ifndef _TR1_STDBOOL_H #define _TR1_STDBOOL_H 1 #include #endif // TR1 ctgmath -*- C++ -*- // Copyright (C) 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/ctgmath * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_CTGMATH #define _GLIBCXX_TR1_CTGMATH 1 #include #endif // _GLIBCXX_TR1_CTGMATH // TR1 cstdio -*- C++ -*- // Copyright (C) 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use m