typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); } typedef std::random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef _Ptr pointer; typedef _Ref reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp** _Map_pointer; typedef _Deque_iterator _Self; _Tp* _M_cur; _Tp* _M_first; _Tp* _M_last; _Map_pointer _M_node; _Deque_iterator(_Tp* __x, _Map_pointer __y) : _M_cur(__x), _M_first(*__y), _M_last(*__y + _S_buffer_size()), _M_node(__y) { } _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { } _Deque_iterator(const iterator& __x) : _M_cur(__x._M_cur), _M_first(__x._M_first), _M_last(__x._M_last), _M_node(__x._M_node) { } reference operator*() const { return *_M_cur; } pointer operator->() const { return _M_cur; } _Self& operator++() { ++_M_cur; if (_M_cur == _M_last) { _M_set_node(_M_node + 1); _M_cur = _M_first; } return *this; } _Self operator++(int) { _Self __tmp = *this; ++*this; return __tmp; } _Self& operator--() { if (_M_cur == _M_first) { _M_set_node(_M_node - 1); _M_cur = _M_last; } --_M_cur; return *this; } _Self operator--(int) { _Self __tmp = *this; --*this; return __tmp; } _Self& operator+=(difference_type __n) { const difference_type __offset = __n + (_M_cur - _M_first); if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) _M_cur += __n; else { const difference_type __node_offset = __offset > 0 ? __offset / difference_type(_S_buffer_size()) : -difference_type((-__offset - 1) / _S_buffer_size()) - 1; _M_set_node(_M_node + __node_offset); _M_cur = _M_first + (__offset - __node_offset * difference_type(_S_buffer_size())); } return *this; } _Self operator+(difference_type __n) const { _Self __tmp = *this; return __tmp += __n; } _Self& operator-=(difference_type __n) { return *this += -__n; } _Self operator-(difference_type __n) const { _Self __tmp = *this; return __tmp -= __n; } reference operator[](difference_type __n) const { return *(*this + __n); } /** * Prepares to traverse new_node. Sets everything except * _M_cur, which should therefore be set by the caller * immediately afterwards, based on _M_first and _M_last. */ void _M_set_node(_Map_pointer __new_node) { _M_node = __new_node; _M_first = *__new_node; _M_last = _M_first + difference_type(_S_buffer_size()); } }; // Note: we also provide overloads whose operands are of the same type in // order to avoid ambiguous overload resolution when std::rel_ops operators // are in scope (for additional details, see libstdc++/3628) template inline bool operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return __x._M_cur == __y._M_cur; } template inline bool operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return __x._M_cur == __y._M_cur; } template inline bool operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return !(__x == __y); } template inline bool operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return !(__x == __y); } template inline bool operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node); } template inline bool operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node); } template inline bool operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return __y < __x; } template inline bool operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return __y < __x; } template inline bool operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return !(__y < __x); } template inline bool operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return !(__y < __x); } template inline bool operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return !(__x < __y); } template inline bool operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return !(__x < __y); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // According to the resolution of DR179 not only the various comparison // operators but also operator- must accept mixed iterator/const_iterator // parameters. template inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) { return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) + (__y._M_last - __y._M_cur); } template inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) { return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) + (__y._M_last - __y._M_cur); } template inline _Deque_iterator<_Tp, _Ref, _Ptr> operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) { return __x + __n; } template void fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first, const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value); /** * Deque base class. This class provides the unified face for %deque's * allocation. This class's constructor and destructor allocate and * deallocate (but do not initialize) storage. This makes %ex ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)ception * safety easier. * * Nothing in this class ever constructs or destroys an actual Tp element. * (Deque handles that itself.) Only/All memory management is performed * here. */ template class _Deque_base { public: typedef _Alloc allocator_type; allocator_type get_allocator() const { return allocator_type(_M_get_Tp_allocator()); } typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; _Deque_base() : _M_impl() { _M_initialize_map(0); } _Deque_base(const allocator_type& __a, size_t __num_elements) : _M_impl(__a) { _M_initialize_map(__num_elements); } _Deque_base(const allocator_type& __a) : _M_impl(__a) { } #ifdef __GXX_EXPERIMENTAL_CXX0X__ _Deque_base(_Deque_base&& __x) : _M_impl(__x._M_get_Tp_allocator()) { _M_initialize_map(0); if (__x._M_impl._M_map) { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_map, __x._M_impl._M_map); std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); } } #endif ~_Deque_base(); protected: //This struct encapsulates the implementation of the std::deque //standard container and at the same time makes use of the EBO //for empty allocators. typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; struct _Deque_impl : public _Tp_alloc_type { _Tp** _M_map; size_t _M_map_size; iterator _M_start; iterator _M_finish; _Deque_impl() : _Tp_alloc_type(), _M_map(0), _M_map_size(0), _M_start(), _M_finish() { } _Deque_impl(const _Tp_alloc_type& __a) : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish() { } }; _Tp_alloc_type& _M_get_Tp_allocator() { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } const _Tp_alloc_type& _M_get_Tp_allocator() const { return *static_cast(&this->_M_impl); } _Map_alloc_type _M_get_map_allocator() const { return _Map_alloc_type(_M_get_Tp_allocator()); } _Tp* _M_allocate_node() { return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); } void _M_deallocate_node(_Tp* __p) { _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); } _Tp** _M_allocate_map(size_t __n) { return _M_get_map_allocator().allocate(__n); } void _M_deallocate_map(_Tp** __p, size_t __n) { _M_get_map_allocator().deallocate(__p, __n); } protected: void _M_initialize_map(size_t); void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); enum { _S_initial_map_size = 8 }; _Deque_impl _M_impl; }; template _Deque_base<_Tp, _Alloc>:: ~_Deque_base() { if (this->_M_impl._M_map) { _M_destroy_nodes(this->_M_impl._M_start._M_node, this->_M_impl._M_finish._M_node + 1); _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); } } /** * @brief Layout storage. * @param num_elements The count of T's for which to allocate space * at first. * @return Nothing. * * The initial underlying memory layout is a bit complicated... */ template void _Deque_base<_Tp, _Alloc>:: _M_initialize_map(size_t __num_elements) { const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) + 1); this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, size_t(__num_nodes + 2)); this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); // For "small" maps (needing less than _M_map_size nodes), allocation // starts in the middle elements and grows outwards. So nstart may be // the beginning of _M_map, but for small maps it may be as far in as // _M_map+3. _Tp** __nstart = (this->_M_impl._M_map + (this->_M_impl._M_map_size - __num_nodes) / 2); _Tp** __nfinish = __nstart + __num_nodes; try { _M_create_nodes(__nstart, __nfinish); } catch(...) { _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); this->_M_impl._M_map = 0; this->_M_impl._M_map_size = 0; __throw_exception_again; } this->_M_impl._M_start._M_set_node(__nstart); this->_M_impl._M_finish._M_set_node(__nfinish - 1); this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first + __num_elements % __deque_buf_size(sizeof(_Tp))); } template void _Deque_base<_Tp, _Alloc>:: _M_create_nodes(_Tp** __nstart, _Tp** __nfinish) { _Tp** __cur; try { for (__cur = __nstart; __cur < __nfinish; ++__cur) *__cur = this->_M_allocate_node(); } catch(...) { _M_destroy_nodes(__nstart, __cur); __throw_exception_again; } } template void _Deque_base<_Tp, _Alloc>:: _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) { for (_Tp** __n = __nstart; __n < __nfinish; ++__n) _M_deallocate_node(*__n); } /** * @brief A standard container using fixed-size memory allocation and * constant-time manipulation of elements at either end. * * @ingroup Containers * @ingroup Sequences * * Meets the requirements of a container, a * reversible container, and a * sequence, including the * optional sequence requirements. * * In previous HP/SGI versions of deque, there was an extra template * parameter so users could control the node size. This extension turned * out to violate the C++ standard (it can be detected using template * template parameters), and it was removed. * * Here's how a deque manages memory. Each deque has 4 members: * * - Tp** _M_map * - size_t _M_map_size * - iterator _M_start, _M_finish * * map_size is at least 8. %map is an array of map_size * pointers-to-"nodes". (The name %map has nothing to do with the * std::map class, and "nodes" should not be confused with * std::list's usage of "node".) * * A "node" has no specific type name as such, but it is referred * to as "node" in this file. It is a simple array-of-Tp. If Tp * is very large, there will be one Tp element per node (i.e., an * "array" of one). For non-huge Tp's, node size is inversely * related to Tp size: the larger the Tp, the fewer Tp's will fit * in a node. The goal here is to keep the total size of a node * relatively small and constant over different Tp's, to improve * allocator efficiency. * * Not every pointer in the %map array will point to a node. If * the initial number of elements in the deque is small, the * /middle/ %map pointers will be valid, and the ones at the edges * will be unused. This same situation will arise as the %map * grows: available %map pointers, if any, will be on the ends. As * new nodes are created, only a subset of the %map's pointers need * to be copied "outward". * * Class invariants: * - For any nonsingular iterator i: * - i.node points to a member of the %map array. (Yes, you read that * correctly: i.node does not actually point to a node.) The member of * the %map array is what actually points to the node. * - i.first == *(i.node) (This points to the node (first Tp element).) * - i.last == i.first + node_size * - i.cur is a pointer in the range [i.first, i.last). NOTE: * the implication of this is that i.cur is always a dereferenceable * pointer, even if i is a past-the-end iterator. * - Start and Finish are always nonsingular iterators. NOTE: this * means that an empty deque must have one node, a deque with > class deque : protected _Deque_base<_Tp, _Alloc> { // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; __glibcxx_class_requires(_Tp, _SGIAssignableConcept) __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) typedef _Deque_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; public: typedef _Tp value_type; typedef typename _Tp_alloc_type::pointer pointer; typedef typename _Tp_alloc_type::const_pointer const_pointer; typedef typename _Tp_alloc_type::reference reference; typedef typename _Tp_alloc_type::const_reference const_reference; typedef typename _Base::iterator iterator; typedef typename _Base::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: typedef pointer* _Map_pointer; static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); } // Functions controlling memory layout, and nothing else. using _Base::_M_initialize_map; using _Base::_M_create_nodes; using _Base::_M_destroy_nodes; using _Base::_M_allocate_node; using _Base::_M_deallocate_node; using _Base::_M_allocate_map; using _Base::_M_deallocate_map; using _Base::_M_get_Tp_allocator; /** * A total of four data members accumulated down the hierarchy. * May be accessed via _M_impl.* */ using _Base::_M_impl; public: // [23.2.1.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ deque() : _Base() { } /** * @brief Creates a %deque with no elements. * @param a An allocator object. */ explicit deque(const allocator_type& __a) : _Base(__a, 0) { } /** * @brief Creates a %deque with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * @param a An allocator. * * This constructor fills the %deque with @a n copies of @a value. */ explicit deque(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(__a, __n) { _M_fill_initialize(__value); } /** * @brief %Deque copy constructor. * @param x A %deque of identical element and allocator types. * * The newly-created %deque uses a copy of the allocation object used * by @a x. */ deque(const deque& __x) : _Base(__x._M_get_Tp_allocator(), __x.size()) { std::__uninitialized_copy_a(__x.begin(), __x.end(), this->_M_impl._M_start, _M_get_Tp_allocator()); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief %Deque move constructor. * @param x A %deque of identical element and allocator types. * * The newly-created %deque contains the exact contents of @a x. * The contents of @a x are a valid, but unspecified %deque. */ deque(deque&& __x) : _Base(std::forward<_Base>(__x)) { } #endif /** * @brief Builds a %deque from a range. * @param first An input iterator. * @param last An input iterator. * @param a An allocator object. * * Create a %deque consisting of copies of the elements from [first, * last). * * If the iterators are forward, bidirectional, or random-access, then * this will call the elements' copy constructor N times (where N is * distance(first,last)) and do no memory reallocation. But if only * input iterators are used, then this will do at most 2N calls to the * copy constructor, and logN memory reallocations. */ template deque(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * The dtor only erases the elements, and note that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibility. */ ~deque() { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } /** * @brief %Deque assignment operator. * @param x A %deque of identical element and allocator types. * * All the elements of @a x are copied, but unlike the copy constructor, * the allocator object is not copied. */ deque& operator=(const deque& __x); #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief %Deque move assignment operator. * @param x A %deque of identical element and allocator types. * * The contents of @a x are moved into this deque (without copying). * @a x is a valid, but unspecified %deque. */ deque& operator=(deque&& __x) { // NB: DR 675. this->clear(); this->swap(__x); return *this; } #endif /** * @brief Assigns a given value to a %deque. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %deque with @a n copies of the given * value. Note that the assignment completely changes the * %deque and that the resulting %deque's size is the same as * the number of elements assigned. Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %deque. * @param first An input iterator. * @param last An input iterator. * * This function fills a %deque with copies of the elements in the * range [first,last). * * Note that the assignment completely changes the %deque and that the * resulting %deque's size is the same as the number of elements * assigned. Old data may be lost. */ template void assign(_InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } /// Get a copy of the memory allocation object. allocator_type get_allocator() const { return _Base::get_allocator(); } // iterators /** * Returns a read/write iterator that points to the first element in the * %deque. Iteration is done in ordinary element order. */ iterator begin() { return this->_M_impl._M_start; } /** * Returns a read-only (constant) iterator that points to the first * element in the %deque. Iteration is done in ordinary element order. */ const_iterator begin() const { return this->_M_impl._M_start; } /** * Returns a read/write iterator that points one past the last * element in the %deque. Iteration is done in ordinary * element order. */ iterator end() { return this->_M_impl._M_finish; } /** * Returns a read-only (constant) iterator that points one past * the last element in the %deque. Iteration is done in * ordinary element order. */ const_iterator end() const { return this->_M_impl._M_finish; } /** * Returns a read/write reverse iterator that points to the * last element in the %deque. Iteration is done in reverse * element order. */ reverse_iterator rbegin() { return reverse_iterator(this->_M_impl._M_finish); } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %deque. Iteration is done in * reverse element order. */ const_reverse_iterator rbegin() const { return const_reverse_iterator(this->_M_impl._M_finish); } /** * Returns a read/write reverse iterator that points to one * before the first element in the %deque. Iteration is done * in reverse element order. */ reverse_iterator rend() { return reverse_iterator(this->_M_impl._M_start); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %deque. Iteration is * done in reverse element order. */ const_reverse_iterator rend() const { return const_reverse_iterator(this->_M_impl._M_start); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * Returns a read-only (constant) iterator that points to the first * element in the %deque. Iteration is done in ordinary element order. */ const_iterator cbegin() const { return this->_M_impl._M_start; } /** * Returns a read-only (constant) iterator that points one past * the last element in the %deque. Iteration is done in * ordinary element order. */ const_iterator cend() const { return this->_M_impl._M_finish; } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %deque. Iteration is done in * reverse element order. */ const_reverse_iterator crbegin() const { return const_reverse_iterator(this->_M_impl._M_finish); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %deque. Iteration is * done in reverse element order. */ const_reverse_iterator crend() const { return const_reverse_iterator(this->_M_impl._M_start); } #endif // [23.2.1.2] capacity /** Returns the number of elements in the %deque. */ size_type size() const { return this->_M_impl._M_finish - this->_M_impl._M_start; } /** Returns the size() of the largest possible %deque. */ size_type max_size() const { return _M_get_Tp_allocator().max_size(); } /** * @brief Resizes the %deque to the specified number of elements. * @param new_size Number of elements the %deque should contain. * @param x Data with which new elements should be populated. * * This function will %resize the %deque to the specified * number of elements. If the number is smaller than the * %deque's current size the %deque is truncated, otherwise the * %deque is extended and new elements are populated with given * data. */ void resize(size_type __new_size, value_type __x = value_type()) { const size_type __len = size(); if (__new_size < __len) _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size)); else insert(this->_M_impl._M_finish, __new_size - __len, __x); } /** * Returns true if the %deque is empty. (Thus begin() would * equal end().) */ bool empty() const { return this->_M_impl._M_finish == this->_M_impl._M_start; } // element access /** * @brief Subscript access to the data contained in the %deque. * @param n The index of the element for which data should be * accessed. * @return Read/write reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ reference operator[](size_type __n) { return this->_M_impl._M_start[difference_type(__n)]; } /** * @brief Subscript access to the data contained in the %deque. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ const_reference operator[](size_type __n) const { return this->_M_impl._M_start[difference_type(__n)]; } protected: /// Safety check used only from at(). void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(__N("deque::_M_range_check")); } public: /** * @brief Provides access to the data contained in the %deque. * @param n The index of the element for which data should be * accessed. * @return Read/write reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the deque. The * function throws out_of_range if the check fails. */ reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } /** * @brief Provides access to the data contained in the %deque. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter is first * checked that it is in the range of the deque. The function throws * out_of_range if the check fails. */ const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } /** * Returns a read/write reference to the data at the first * element of the %deque. */ reference front() { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %deque. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last element of the * %deque. */ reference back() { iterator __tmp = end(); --__tmp; return *__tmp; } /** * Returns a read-only (constant) reference to the data at the last * element of the %deque. */ const_reference back() const { const_iterator __tmp = end(); --__tmp; return *__tmp; } // [23.2.1.2] modifiers /** * @brief Add data to the front of the %deque. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the front of the %deque and assigns the given * data to it. Due to the nature of a %deque this operation * can be done in constant time. */ #ifndef __GXX_EXPERIMENTAL_CXX0X__ void push_front(const value_type& __x) { if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) { this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x); --this->_M_impl._M_start._M_cur; } else _M_push_front_aux(__x); } #else template void push_front(_Args&&... __args) { if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) { this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, std::forward<_Args>(__args)...); --this->_M_impl._M_start._M_cur; } else _M_push_front_aux(std::forward<_Args>(__args)...); } #endif /** * @brief Add data to the end of the %deque. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %deque and assigns the given data * to it. Due to the nature of a %deque this operation can be * done in constant time. */ #ifndef __GXX_EXPERIMENTAL_CXX0X__ void push_back(const value_type& __x) { if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_last - 1) { this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x); ++this->_M_impl._M_finish._M_cur; } else _M_push_back_aux(__x); } #else template void push_back(_Args&&... __args) { if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_last - 1) { this->_M_impl.construct(this->_M_impl._M_finish._M_cur, std::forward<_Args>(__args)...); ++this->_M_impl._M_finish._M_cur; } else _M_push_back_aux(std::forward<_Args>(__args)...); } #endif /** * @brief Removes first element. * * This is a typical stack operation. It shrinks the %deque by one. * * Note that no data is returned, and if the first element's data is * needed, it should be retrieved before pop_front() is called. */ void pop_front() { if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_last - 1) { this->_M_impl.destroy(this->_M_impl._M_start._M_cur); ++this->_M_impl._M_start._M_cur; } else _M_pop_front_aux(); } /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %deque by one. * * Note that no data is returned, and if the last element's data is * needed, it should be retrieved before pop_back() is called. */ void pop_back() { if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_first) { --this->_M_impl._M_finish._M_cur; this->_M_impl.destroy(this->_M_impl._M_finish._M_cur); } else _M_pop_back_aux(); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Inserts an object in %deque before specified iterator. * @param position An iterator into the %deque. * @param args Arguments. * @return An iterator that points to the inserted data. * * This function will insert an object of type T constructed * with T(std::forward(args)...) before the specified location. */ template iterator emplace(iterator __position, _Args&&... __args); #endif /** * @brief Inserts given value into %deque before specified iterator. * @param position An iterator into the %deque. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before the * specified location. */ iterator insert(iterator __position, const value_type& __x); #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Inserts given rvalue into %deque before specified iterator. * @param position An iterator into the %deque. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given rvalue before the * specified location. */ iterator insert(iterator __position, value_type&& __x) { return emplace(__position, std::move(__x)); } #endif /** * @brief Inserts a number of copies of given data into the %deque. * @param position An iterator into the %deque. * @param n Number of elements to be inserted. * @param x Data to be inserted. * * This function will insert a specified number of copies of the given * data before the location specified by @a position. */ void insert(iterator __position, size_type __n, const value_type& __x) { _M_fill_insert(__position, __n, __x); } /** * @brief Inserts a range into the %deque. * @param position An iterator into the %deque. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range * [first,last) into the %deque before the location specified * by @a pos. This is known as "range insert." */ template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } /** * @brief Remove element at given position. * @param position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %deque by one. * * The user is cautioned that * this function only erases the element, and that if the element is * itself a pointer, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ iterator erase(iterator __position); /** * @brief Remove a range of elements. * @param first Iterator pointing to the first element to be erased. * @param last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range [first,last) and * shorten the %deque accordingly. * * The user is cautioned that * this function only erases the elements, and that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibility. */ iterator erase(iterator __first, iterator __last); /** * @brief Swaps data with another %deque. * @param x A %deque of the same element and allocator types. * * This exchanges the elements between two deques in constant time. * (Four pointers, so it should be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(d1,d2) will feed to this function. */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ swap(deque&& __x) #else swap(deque& __x) #endif { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_map, __x._M_impl._M_map); std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 431. Swapping containers with unequal allocators. std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); } /** * Erases all the elements. Note that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibility. */ void clear() { _M_erase_at_end(begin()); } protected: // Internal constructor functions follow. // called by the range constructor to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_initialize_map(static_cast(__n)); _M_fill_initialize(__x); } // called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } // called by the second initialize_dispatch above //@{ /** * @brief Fills the deque with whatever is in [first,last). * @param first An input iterator. * @param last An input iterator. * @return Nothing. * * If the iterators are actually forward iterators (or better), then the * memory layout can be done all at once. Else we move forward using * push_back on each value from the iterator. */ template void _M_range_initialize(_InputIterator __first, _InputIterator __last, std::input_iterator_tag); // called by the second initialize_dispatch above template void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); //@} /** * @brief Fills the %deque with copies of value. * @param value Initial value. * @return Nothing. * @pre _M_start and _M_finish have already been initialized, * but none of the %deque's elements have yet been constructed. * * This function is called only when the user provides an explicit size * (with or without an explicit exemplar value). */ void _M_fill_initialize(const value_type& __value); // Internal assign functions follow. The *_aux functions do the actual // assignment work for the range versions. // called by the range assign to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } // called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } // called by the second assign_dispatch above template void _M_assign_aux(_InputIterator __first, _InputIterator __last, std::input_iterator_tag); // called by the second assign_dispatch above template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __len = std::distance(__first, __last); if (__len > size()) { _ForwardIterator __mid = __first; std::advance(__mid, size()); std::copy(__first, __mid, begin()); insert(end(), __mid, __last); } else _M_erase_at_end(std::copy(__first, __last, begin())); } // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val) { if (__n > size()) { std::fill(begin(), end(), __val); insert(end(), __n - size(), __val); } else { _M_erase_at_end(begin() + difference_type(__n)); std::fill(begin(), end(), __val); } } //@{ /// Helper functions for push_* and pop_*. #ifndef __GXX_EXPERIMENTAL_CXX0X__ void _M_push_back_aux(const value_type&); void _M_push_front_aux(const value_type&); #else template void _M_push_back_aux(_Args&&... __args); template void _M_push_front_aux(_Args&&... __args); #endif void _M_pop_back_aux(); void _M_pop_front_aux(); //@} // Internal insert functions follow. The *_aux functions do the actual // insertion work when all shortcuts fail. // called by the range insert to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type) { _M_fill_insert(__pos, __n, __x); } // called by the range insert to implement [23.1.1]/9 template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_insert_aux(__pos, __first, __last, _IterCategory()); } // called by the second insert_dispatch above template void _M_range_insert_aux(iterator __pos, _InputIterator __first, _InputIterator __last, std::input_iterator_tag); // called by the second insert_dispatch above template void _M_range_insert_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); // Called by insert(p,n,x), and the range insert when it turns out to be // the same thing. Can use fill functions in optimal situations, // otherwise passes off to insert_aux(p,n,x). void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); // called by insert(p,x) #ifndef __GXX_EXPERIMENTAL_CXX0X__ iterator _M_insert_aux(iterator __pos, const value_type& __x); #else template iterator _M_insert_aux(iterator __pos, _Args&&... __args); #endif // called by insert(p,n,x) via fill_insert void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); // called by range_insert_aux for forward iterators template void _M_insert_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, size_type __n); // Internal erase functions follow. void _M_destroy_data_aux(iterator __first, iterator __last); // Called by ~deque(). // NB: Doesn't deallocate the nodes. template void _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) { _M_destroy_data_aux(__first, __last); } void _M_destroy_data(iterator __first, iterator __last, const std::allocator<_Tp>&) { if (!__has_trivial_destructor(value_type)) _M_destroy_data_aux(__first, __last); } // Called by erase(q1, q2). void _M_erase_at_begin(iterator __pos) { _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); this->_M_impl._M_start = __pos; } // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, // _M_fill_assign, operator=. void _M_erase_at_end(iterator __pos) { _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); _M_destroy_nodes(__pos._M_node + 1, this->_M_impl._M_finish._M_node + 1); this->_M_impl._M_finish = __pos; } //@{ /// Memory-handling helpers for the previous internal insert functions. iterator _M_reserve_elements_at_front(size_type __n) { const size_type __vacancies = this->_M_impl._M_start._M_cur - this->_M_impl._M_start._M_first; if (__n > __vacancies) _M_new_elements_at_front(__n - __vacancies); return this->_M_impl._M_start - difference_type(__n); } iterator _M_reserve_elements_at_back(size_type __n) { const size_type __vacancies = (this->_M_impl._M_finish._M_last - this->_M_impl._M_finish._M_cur) - 1; if (__n > __vacancies) _M_new_elements_at_back(__n - __vacancies); return this->_M_impl._M_finish + difference_type(__n); } void _M_new_elements_at_front(size_type __new_elements); void _M_new_elements_at_back(size_type __new_elements); //@} //@{ /** * @brief Memory-handling helpers for the major %map. * * Makes sure the _M_map has space for new nodes. Does not * actually add the nodes. Can invalidate _M_map pointers. * (And consequently, %deque iterators.) */ void _M_reserve_map_at_back(size_type __nodes_to_add = 1) { if (__nodes_to_add + 1 > this->_M_impl._M_map_size - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) _M_reallocate_map(__nodes_to_add, false); } void _M_reserve_map_at_front(size_type __nodes_to_add = 1) { if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node - this->_M_impl._M_map)) _M_reallocate_map(__nodes_to_add, true); } void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); //@} }; /** * @brief Deque equality comparison. * @param x A %deque. * @param y A %deque of the same type as @a x. * @return True iff the size and elements of the deques are equal. * * This is an equivalence relation. It is linear in the size of the * deques. Deques are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ template inline bool operator==(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return __x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin()); } /** * @brief Deque ordering relation. * @param x A %deque. * @param y A %deque of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * deques. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template inline bool operator!=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__x == __y); } /// Based on operator< template inline bool operator>(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return __y < __x; } /// Based on operator< template inline bool operator<=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__y < __x); } /// Based on operator< template inline bool operator>=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__x < __y); } /// See std::deque::swap(). template inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) { __x.swap(__y); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ template inline void swap(deque<_Tp,_Alloc>&& __x, deque<_Tp,_Alloc>& __y) { __x.swap(__y); } template inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>&& __y) { __x.swap(__y); } #endif _GLIBCXX_END_NESTED_NAMESPACE #endif /* _STL_DEQUE_H */ // Locale support -*- C++ -*- // Copyright (C) 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file locale_facets_nonio.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ // // ISO C++ 14882: 22.1 Locales // #ifndef _LOCALE_FACETS_NONIO_H #define _LOCALE_FACETS_NONIO_H 1 #pragma GCC system_header #include // For struct tm _GLIBCXX_BEGIN_NAMESPACE(std) /** * @brief Time format ordering data. * * This class provides an enum representing different orderings of day, * month, and year. */ class time_base { public: enum dateorder { no_order, dmy, mdy, ymd, ydm }; }; template struct __timepunct_cache : public locale::facet { // List of all known timezones, with GMT first. static const _CharT* _S_timezones[14]; const _CharT* _M_date_format; const _CharT* _M_date_era_format; const _CharT* _M_time_format; const _CharT* _M_time_era_format; const _CharT* _M_date_time_format; const _CharT* _M_date_time_era_format; const _CharT* _M_am; const _CharT* _M_pm; const _CharT* _M_am_pm_format; // Day names, starting with "C"'s Sunday. const _CharT* _M_day1; const _CharT* _M_day2; const _CharT* _M_day3; const _CharT* _M_day4; const _CharT* _M_day5; const _CharT* _M_day6; const _CharT* _M_day7; // Abbreviated day names, starting with "C"'s Sun. const _CharT* _M_aday1; const _CharT* _M_aday2; const _CharT* _M_aday3; const _CharT* _M_aday4; const _CharT* _M_aday5; const _CharT* _M_aday6; const _CharT* _M_aday7; // Month names, starting with "C"'s January. const _CharT* _M_month01; const _CharT* _M_month02; const _CharT* _M_month03; const _CharT* _M_month04; const _CharT* _M_month05; const _CharT* _M_month06; const _CharT* _M_month07; const _CharT* _M_month08; const _CharT* _M_month09; const _CharT* _M_month10; const _CharT* _M_month11; const _CharT* _M_month12; // Abbreviated month names, starting with "C"'s Jan. const _CharT* _M_amonth01; const _CharT* _M_amonth02; const _CharT* _M_amonth03; const _CharT* _M_amonth04; const _CharT* _M_amonth05; const _CharT* _M_amonth06; const _CharT* _M_amonth07; const _CharT* _M_amonth08; const _CharT* _M_amonth09; const _CharT* _M_amonth10; const _CharT* _M_amonth11; const _CharT* _M_amonth12; bool _M_allocated; __timepunct_cache(size_t __refs = 0) : facet(__refs), _M_date_format(NULL), _M_date_era_format(NULL), _M_time_format(NULL), _M_time_era_format(NULL), _M_date_time_format(NULL), _M_date_time_era_format(NULL), _M_am(NULL), _M_pm(NULL), _M_am_pm_format(NULL), _M_day1(NULL), _M_day2(NULL), _M_day3(NULL), _M_day4(NULL), _M_day5(NULL), _M_day6(NULL), _M_day7(NULL), _M_aday1(NULL), _M_aday2(NULL), _M_aday3(NULL), _M_aday4(NULL), _M_aday5(NULL), _M_aday6(NULL), _M_aday7(NULL), _M_month01(NULL), _M_month02(NULL), _M_month03(NULL), _M_month04(NULL), _M_month05(NULL), _M_month06(NULL), _M_month07(NULL), _M_month08(NULL), _M_month09(NULL), _M_month10(NULL), _M_month11(NULL), _M_month12(NULL), _M_amonth01(NULL), _M_amonth02(NULL), _M_amonth03(NULL), _M_amonth04(NULL), _M_amonth05(NULL), _M_amonth06(NULL), _M_amonth07(NULL), _M_amonth08(NULL), _M_amonth09(NULL), _M_amonth10(NULL), _M_amonth11(NULL), _M_amonth12(NULL), _M_allocated(false) { } ~__timepunct_cache(); void _M_cache(const locale& __loc); private: __timepunct_cache& operator=(const __timepunct_cache&); explicit __timepunct_cache(const __timepunct_cache&); }; template __timepunct_cache<_CharT>::~__timepunct_cache() { if (_M_allocated) { // Unused. } } // Specializations. template<> const char* __timepunct_cache::_S_timezones[14]; #ifdef _GLIBCXX_USE_WCHAR_T template<> const wchar_t* __timepunct_cache::_S_timezones[14]; #endif // Generic. template const _CharT* __timepunct_cache<_CharT>::_S_timezones[14]; template class __timepunct : public locale::facet { public: // Types: typedef _CharT __char_type; typedef basic_string<_CharT> __string_type; typedef __timepunct_cache<_CharT> __cache_type; protected: __cache_type* _M_data; __c_locale _M_c_locale_timepunct; const char* _M_name_timepunct; public: /// Numpunct facet id. static locale::id id; explicit __timepunct(size_t __refs = 0); explicit __timepunct(__cache_type* __cache, size_t __refs = 0); /** * @brief Internal constructor. Not for general use. * * This is a constructor for use by the library itself to set up new * locales. * * @param cloc The "C" locale. * @param s The name of a locale. * @param refs Passed to the base facet class. */ explicit __timepunct(__c_locale __cloc, const char* __s, size_t __refs = 0); // FIXME: for error checking purposes _M_put should return the return // value of strftime/wcsftime. void _M_put(_CharT* __s, size_t __maxlen, const _CharT* __format, const tm* __tm) const; void _M_date_formats(const _CharT** __date) const { // Always have default first. __date[0] = _M_data->_M_date_format; __date[1] = _M_data->_M_date_era_format; } void _M_time_formats(const _CharT** __time) const { // Always have default first. __time[0] = _M_data->_M_time_format; __time[1] = _M_data->_M_time_era_format; } void _M_date_time_formats(const _CharT** __dt) const { // Always have default first. __dt[0] = _M_data->_M_date_time_format; __dt[1] = _M_data->_M_date_time_era_format; } void _M_am_pm_format(const _CharT* __ampm) const { __ampm = _M_data->_M_am_pm_format; } void _M_am_pm(const _CharT** __ampm) const { __ampm[0] = _M_data->_M_am; __ampm[1] = _M_data->_M_pm; } void _M_days(const _CharT** __days) const { __days[0] = _M_data->_M_day1; __days[1] = _M_data->_M_day2; __days[2] = _M_data->_M_day3; __days[3] = _M_data->_M_day4; __days[4] = _M_data->_M_day5; __days[5] = _M_data->_M_day6; __days[6] = _M_data->_M_day7; } void _M_days_abbreviated(const _CharT** __days) const