ble @a v. It does so * by calling num_get::do_get(). * * The input characters are parsed like the scanf %p specifier. * * Digit grouping is interpreted according to numpunct::grouping() and * numpunct::thousands_sep(). If the pattern of digit groups isn't * consistent, sets err to ios_base::failbit. * * Note that the digit grouping effect for pointers is a bit ambiguous * in the standard and shouldn't be relied on. See DR 344. * * If parsing the string yields a valid value for @a v, @a v is set. * Otherwise, sets err to ios_base::failbit and leaves @a v unaltered. * Sets err to ios_base::eofbit if the stream is emptied. * * @param in Start of input stream. * @param end End of input stream. * @param io Source of locale and flags. * @param err Error flags to set. * @param v Value to format and insert. * @return Iterator after reading. */ iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, void*& __v) const { return this->do_get(__in, __end, __io, __err, __v); } protected: /// Destructor. virtual ~num_get() { } iter_type _M_extract_float(iter_type, iter_type, ios_base&, ios_base::iostate&, string& __xtrc) const; template iter_type _M_extract_int(iter_type, iter_type, ios_base&, ios_base::iostate&, _ValueT& __v) const; template typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, int>::__type _M_find(const _CharT2*, size_t __len, _CharT2 __c) const { int __ret = -1; if (__len <= 10) { if (__c >= _CharT2('0') && __c < _CharT2(_CharT2('0') + __len)) __ret = __c - _CharT2('0'); } else { if (__c >= _CharT2('0') && __c <= _CharT2('9')) __ret = __c - _CharT2('0'); else if (__c >= _CharT2('a') && __c <= _CharT2('f')) __ret = 10 + (__c - _CharT2('a')); else if (__c >= _CharT2('A') && __c <= _CharT2('F')) __ret = 10 + (__c - _CharT2('A')); } return __ret; } template typename __gnu_cxx::__enable_if::__value, int>::__type _M_find(const _CharT2* __zero, size_t __len, _CharT2 __c) const { int __ret = -1; const char_type* __q = char_traits<_CharT2>::find(__zero, __len, __c); if (__q) { __ret = __q - __zero; if (__ret > 15) __ret -= 6; } return __ret; } //@{ /** * @brief Numeric parsing. * * Parses the input stream into the variable @a v. This function is a * hook for derived classes to change the value returned. @see get() * for more details. * * @param in Start of input stream. * @param end End of input stream. * @param io Source of locale and flags. * @param err Error flags to set. * @param v Value to format and insert. * @return Iterator after reading. */ virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, bool&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, long&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, unsigned short&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, unsigned int&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, unsigned long&) const; #ifdef _GLIBCXX_USE_LONG_LONG virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, long long&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, unsigned long long&) const; #endif virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, float&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, double&) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type __do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, double&) const; #else virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, long double&) const; #endif virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, void*&) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, long double&) const; #endif //@} }; template locale::id num_get<_CharT, _InIter>::id; /** * @brief Facet for converting numbers to strings. * * This facet encapsulates the code to convert a number to a string. It is * used by the ostream numeric insertion operators. * * The num_put template uses protected virtual functions to provide the * actual results. The public accessors forward the call to the virtual * functions. These virtual functions are hooks for developers to * implement the behavior they require from the num_put facet. */ template class num_put : public locale::facet { public: // Types: //@{ /// Public typedefs typedef _CharT char_type; typedef _OutIter iter_type; //@} /// Numpunct facet id. static locale::id id; /** * @brief Constructor performs initialization. * * This is the constructor provided by the standard. * * @param refs Passed to the base facet class. */ explicit num_put(size_t __refs = 0) : facet(__refs) { } /** * @brief Numeric formatting. * * Formats the boolean @a v and inserts it into a stream. It does so * by calling num_put::do_put(). * * If ios_base::boolalpha is set, writes ctype::truename() or * ctype::falsename(). Otherwise formats @a v as an int. * * @param s Stream to write to. * @param io Source of locale and flags. * @param fill Char_type to use for filling. * @param v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __f, char_type __fill, bool __v) const { return this->do_put(__s, __f, __fill, __v); } //@{ /** * @brief Numeric formatting. * * Formats the integral value @a v and inserts it into a * stream. It does so by calling num_put::do_put(). * * Formatting is affected by the flag settings in @a io. * * The basic format is affected by the value of io.flags() & * ios_base::basefield. If equal to ios_base::oct, formats like the * printf %o specifier. Else if equal to ios_base::hex, formats like * %x or %X with ios_base::uppercase unset or set respectively. * Otherwise, formats like %d, %ld, %lld for signed and %u, %lu, %llu * for unsigned values. Note that if both oct and hex are set, neither * will take effect. * * If ios_base::showpos is set, '+' is output before positive values. * If ios_base::showbase is set, '0' precedes octal values (except 0) * and '0[xX]' precedes hex values. * * Thousands separators are inserted according to numpunct::grouping() * and numpunct::thousands_sep(). The decimal point character used is * numpunct::decimal_point(). * * If io.width() is non-zero, enough @a fill characters are inserted to * make the result at least that wide. If * (io.flags() & ios_base::adjustfield) == ios_base::left, result is * padded at the end. If ios_base::internal, then padding occurs * immediately after either a '+' or '-' or after '0x' or '0X'. * Otherwise, padding occurs at the beginning. * * @param s Stream to write to. * @param io Source of locale and flags. * @param fill Char_type to use for filling. * @param v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __f, char_type __fill, long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, unsigned long __v) const { return this->do_put(__s, __f, __fill, __v); } #ifdef _GLIBCXX_USE_LONG_LONG iter_type put(iter_type __s, ios_base& __f, char_type __fill, long long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, unsigned long long __v) const { return this->do_put(__s, __f, __fill, __v); } #endif //@} //@{ /** * @brief Numeric formatting. * * Formats the floating point value @a v and inserts it into a stream. * It does so by calling num_put::do_put(). * * Formatting is affected by the flag settings in @a io. * * The basic format is affected by the value of io.flags() & * ios_base::floatfield. If equal to ios_base::fixed, formats like the * printf %f specifier. Else if equal to ios_base::scientific, formats * like %e or %E with ios_base::uppercase unset or set respectively. * Otherwise, formats like %g or %G depending on uppercase. Note that * if both fixed and scientific are set, the effect will also be like * %g or %G. * * The output precision is given by io.precision(). This precision is * capped at numeric_limits::digits10 + 2 (different for double and * long double). The default precision is 6. * * If ios_base::showpos is set, '+' is output before positive values. * If ios_base::showpoint is set, a decimal point will always be * output. * * Thousands separators are inserted according to numpunct::grouping() * and numpunct::thousands_sep(). The decimal point character used is * numpunct::decimal_point(). * * If io.width() is non-zero, enough @a fill characters are inserted to * make the result at least that wide. If * (io.flags() & ios_base::adjustfield) == ios_base::left, result is * padded at the end. If ios_base::internal, then padding occurs * immediately after either a '+' or '-' or after '0x' or '0X'. * Otherwise, padding occurs at the beginning. * * @param s Stream to write to. * @param io Source of locale and flags. * @param fill Char_type to use for filling. * @param v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __f, char_type __fill, double __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, long double __v) const { return this->do_put(__s, __f, __fill, __v); } //@} /** * @brief Numeric formatting. * * Formats the pointer value @a v and inserts it into a stream. It * does so by calling num_put::do_put(). * * This function formats @a v as an unsigned long with ios_base::hex * and ios_base::showbase set. * * @param s Stream to write to. * @param io Source of locale and flags. * @param fill Char_type to use for filling. * @param v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __f, char_type __fill, const void* __v) const { return this->do_put(__s, __f, __fill, __v); } protected: template iter_type _M_insert_float(iter_type, ios_base& __io, char_type __fill, char __mod, _ValueT __v) const; void _M_group_float(const char* __grouping, size_t __grouping_size, char_type __sep, const char_type* __p, char_type* __new, char_type* __cs, int& __len) const; template iter_type _M_insert_int(iter_type, ios_base& __io, char_type __fill, _ValueT __v) const; void _M_group_int(const char* __grouping, size_t __grouping_size, char_type __sep, ios_base& __io, char_type* __new, char_type* __cs, int& __len) const; void _M_pad(char_type __fill, streamsize __w, ios_base& __io, char_type* __new, const char_type* __cs, int& __len) const; /// Destructor. virtual ~num_put() { }; //@{ /** * @brief Numeric formatting. * * These functions do the work of formatting numeric values and * inserting them into a stream. This function is a hook for derived * classes to change the value returned. * * @param s Stream to write to. * @param io Source of locale and flags. * @param fill Char_type to use for filling. * @param v Value to format and insert. * @return Iterator after writing. */ virtual iter_type do_put(iter_type, ios_base&, char_type __fill, bool __v) const; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, long __v) const; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, unsigned long) const; #ifdef _GLIBCXX_USE_LONG_LONG virtual iter_type do_put(iter_type, ios_base&, char_type __fill, long long __v) const; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, unsigned long long) const; #endif virtual iter_type do_put(iter_type, ios_base&, char_type __fill, double __v) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type __do_put(iter_type, ios_base&, char_type __fill, double __v) const; #else virtual iter_type do_put(iter_type, ios_base&, char_type __fill, long double __v) const; #endif virtual iter_type do_put(iter_type, ios_base&, char_type __fill, const void* __v) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type do_put(iter_type, ios_base&, char_type __fill, long double __v) const; #endif //@} }; template locale::id num_put<_CharT, _OutIter>::id; _GLIBCXX_END_LDBL_NAMESPACE // Subclause convenience interfaces, inlines. // NB: These are inline because, when used in a loop, some compilers // can hoist the body out of the loop; then it's just as fast as the // C is*() function. /// Convenience interface to ctype.is(ctype_base::space, __c). template inline bool isspace(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::space, __c); } /// Convenience interface to ctype.is(ctype_base::print, __c). template inline bool isprint(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::print, __c); } /// Convenience interface to ctype.is(ctype_base::cntrl, __c). template inline bool iscntrl(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::cntrl, __c); } /// Convenience interface to ctype.is(ctype_base::upper, __c). template inline bool isupper(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::upper, __c); } /// Convenience interface to ctype.is(ctype_base::lower, __c). template inline bool islower(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::lower, __c); } /// Convenience interface to ctype.is(ctype_base::alpha, __c). template inline bool isalpha(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::alpha, __c); } /// Convenience interface to ctype.is(ctype_base::digit, __c). template inline bool isdigit(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::digit, __c); } /// Convenience interface to ctype.is(ctype_base::punct, __c). template inline bool ispunct(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::punct, __c); } /// Convenience interface to ctype.is(ctype_base::xdigit, __c). template inline bool isxdigit(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::xdigit, __c); } /// Convenience interface to ctype.is(ctype_base::alnum, __c). template inline bool isalnum(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::alnum, __c); } /// Convenience interface to ctype.is(ctype_base::graph, __c). template inline bool isgraph(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::graph, __c); } /// Convenience interface to ctype.toupper(__c). template inline _CharT toupper(_CharT __c, const locale& __loc) { return use_facet >(__loc).toupper(__c); } /// Convenience interface to ctype.tolower(__c). template inline _CharT tolower(_CharT __c, const locale& __loc) { return use_facet >(__loc).tolower(__c); } _GLIBCXX_END_NAMESPACE #ifndef _GLIBCXX_EXPORT_TEMPLATE # include #endif #endif // The template and inlines for the -*- C++ -*- slice_array class. // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file slice_array.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ // Written by Gabriel Dos Reis #ifndef _SLICE_ARRAY_H #define _SLICE_ARRAY_H 1 #pragma GCC system_header _GLIBCXX_BEGIN_NAMESPACE(std) /** * @brief Class defining one-dimensional subset of an array. * * The slice class represents a one-dimensional subset of an array, * specified by three parameters: start offset, size, and stride. The * start offset is the index of the first element of the array that is part * of the subset. The size is the total number of elements in the subset. * Stride is the distance between each successive array element to include * in the subset. * * For example, with an array of size 10, and a slice with offset 1, size 3 * and stride 2, the subset consists of array elements 1, 3, and 5. */ class slice { public: /// Construct an empty slice. slice(); /** * @brief Construct a slice. * * @param o Offset in array of first element. * @param d Number of elements in slice. * @param s Stride between array elements. */ slice(size_t, size_t, size_t); /// Return array offset of first slice element. size_t start() const; /// Return size of slice. size_t size() const; /// Return array stride of slice. size_t stride() const; private: size_t _M_off; // offset size_t _M_sz; // size size_t _M_st; // stride unit }; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 543. valarray slice default constructor inline slice::slice() : _M_off(0), _M_sz(0), _M_st(0) {} inline slice::slice(size_t __o, size_t __d, size_t __s) : _M_off(__o), _M_sz(__d), _M_st(__s) {} inline size_t slice::start() const { return _M_off; } inline size_t slice::size() const { return _M_sz; } inline size_t slice::stride() const { return _M_st; } /** * @brief Reference to one-dimensional subset of an array. * * A slice_array is a reference to the actual elements of an array * specified by a slice. The way to get a slice_array is to call * operator[](slice) on a valarray. The returned slice_array then permits * carrying operations out on the referenced subset of elements in the * original valarray. For example, operator+=(valarray) will add values * to the subset of elements in the underlying valarray this slice_array * refers to. * * @param Tp Element type. */ template class slice_array { public: typedef _Tp value_type; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 253. valarray helper functions are almost entirely useless /// Copy constructor. Both slices refer to the same underlying array. slice_array(const slice_array&); /// Assignment operator. Assigns slice elements to corresponding /// elements of @a a. slice_array& operator=(const slice_array&); /// Assign slice elements to corresponding elements of @a v. void operator=(const valarray<_Tp>&) const; /// Multiply slice elements by corresponding elements of @a v. void operator*=(const valarray<_Tp>&) const; /// Divide slice elements by corresponding elements of @a v. void operator/=(const valarray<_Tp>&) const; /// Modulo slice elements by corresponding elements of @a v. void operator%=(const valarray<_Tp>&) const; /// Add corresponding elements of @a v to slice elements. void operator+=(const valarray<_Tp>&) const; /// Subtract corresponding elements of @a v from slice elements. void operator-=(const valarray<_Tp>&) const; /// Logical xor slice elements with corresponding elements of @a v. void operator^=(const valarray<_Tp>&) const; /// Logical and slice elements with corresponding elements of @a v. void operator&=(const valarray<_Tp>&) const; /// Logical or slice elements with corresponding elements of @a v. void operator|=(const valarray<_Tp>&) const; /// Left shift slice elements by corresponding elements of @a v. void operator<<=(const valarray<_Tp>&) const; /// Right shift slice elements by corresponding elements of @a v. void operator>>=(const valarray<_Tp>&) const; /// Assign all slice elements to @a t. void operator=(const _Tp &) const; // ~slice_array (); template void operator=(const _Expr<_Dom, _Tp>&) const; template void operator*=(const _Expr<_Dom, _Tp>&) const; template void operator/=(const _Expr<_Dom, _Tp>&) const; template void operator%=(const _Expr<_Dom, _Tp>&) const; template void operator+=(const _Expr<_Dom, _Tp>&) const; template void operator-=(const _Expr<_Dom, _Tp>&) const; template void operator^=(const _Expr<_Dom, _Tp>&) const; template void operator&=(const _Expr<_Dom, _Tp>&) const; template void operator|=(const _Expr<_Dom, _Tp>&) const; template void operator<<=(const _Expr<_Dom, _Tp>&) const; template void operator>>=(const _Expr<_Dom, _Tp>&) const; private: friend class valarray<_Tp>; slice_array(_Array<_Tp>, const slice&); const size_t _M_sz; const size_t _M_stride; const _Array<_Tp> _M_array; // not implemented slice_array(); }; template inline slice_array<_Tp>::slice_array(_Array<_Tp> __a, const slice& __s) : _M_sz(__s.size()), _M_stride(__s.stride()), _M_array(__a.begin() + __s.start()) {} template inline slice_array<_Tp>::slice_array(const slice_array<_Tp>& a) : _M_sz(a._M_sz), _M_stride(a._M_stride), _M_array(a._M_array) {} // template // inline slice_array<_Tp>::~slice_array () {} template inline slice_array<_Tp>& slice_array<_Tp>::operator=(const slice_array<_Tp>& __a) { std::__valarray_copy(__a._M_array, __a._M_sz, __a._M_stride, _M_array, _M_stride); return *this; } template inline void slice_array<_Tp>::operator=(const _Tp& __t) const { std::__valarray_fill(_M_array, _M_sz, _M_stride, __t); } template inline void slice_array<_Tp>::operator=(const valarray<_Tp>& __v) const { std::__valarray_copy(_Array<_Tp>(__v), _M_array, _M_sz, _M_stride); } template template inline void slice_array<_Tp>::operator=(const _Expr<_Dom,_Tp>& __e) const { std::__valarray_copy(__e, _M_sz, _M_array, _M_stride); } #undef _DEFINE_VALARRAY_OPERATOR #define _DEFINE_VALARRAY_OPERATOR(_Op,_Name) \ template \ inline void \ slice_array<_Tp>::operator _Op##=(const valarray<_Tp>& __v) const \ { \ _Array_augmented_##_Name(_M_array, _M_sz, _M_stride, _Array<_Tp>(__v));\ } \ \ template \ template \ inline void \ slice_array<_Tp>::operator _Op##=(const _Expr<_Dom,_Tp>& __e) const\ { \ _Array_augmented_##_Name(_M_array, _M_stride, __e, _M_sz); \ } _DEFINE_VALARRAY_OPERATOR(*, __multiplies) _DEFINE_VALARRAY_OPERATOR(/, __divides) _DEFINE_VALARRAY_OPERATOR(%, __modulus) _DEFINE_VALARRAY_OPERATOR(+, __plus) _DEFINE_VALARRAY_OPERATOR(-, __minus) _DEFINE_VALARRAY_OPERATOR(^, __bitwise_xor) _DEFINE_VALARRAY_OPERATOR(&, __bitwise_and) _DEFINE_VALARRAY_OPERATOR(|, __bitwise_or) _DEFINE_VALARRAY_OPERATOR(<<, __shift_left) _DEFINE_VALARRAY_OPERATOR(>>, __shift_right) #undef _DEFINE_VALARRAY_OPERATOR _GLIBCXX_END_NAMESPACE #endif /* _SLICE_ARRAY_H */ // RB tree implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * */ /** @file stl_tree.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _STL_TREE_H #define _STL_TREE_H 1 #include #include #include #include _GLIBCXX_BEGIN_NAMESPACE(std) // Red-black tree class, designed for use in implementing STL // associative containers (set, multiset, map, and multimap). The // insertion and deletion algorithms are based on those in Cormen, // Leiserson, and Rivest, Introduction to Algorithms (MIT Press, // 1990), except that // // (1) the header cell is maintained with links not only to the root // but also to the leftmost node of the tree, to enable constant // time begin(), and to the rightmost node of the tree, to enable // linear time performance when used with the generic set algorithms // (set_union, etc.) // // (2) when a node being deleted has two children its successor node // is relinked into its place, rather than copied, so that the only // iterators invalidated are those referring to the deleted node. enum _Rb_tree_color { _S_red = false, _S_black = true }; struct _Rb_tree_node_base { typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; _Rb_tree_color _M_color; _Base_ptr _M_parent; _Base_ptr _M_left; _Base_ptr _M_right; static _Base_ptr _S_minimum(_Base_ptr __x) { while (__x->_M_left != 0) __x = __x->_M_left; return __x; } static _Const_Base_ptr _S_minimum(_Const_Base_ptr __x) { while (__x->_M_left != 0) __x = __x->_M_left; return __x; } static _Base_ptr _S_maximum(_Base_ptr __x) { while (__x->_M_right != 0) __x = __x->_M_right; return __x; } static _Const_Base_ptr _S_maximum(_Const_Base_ptr __x) { while (__x->_M_right != 0) __x = __x->_M_right; return __x; } }; template struct _Rb_tree_node : public _Rb_tree_node_base { typedef _Rb_tree_node<_Val>* _Link_type; _Val _M_value_field; }; _Rb_tree_node_base* _Rb_tree_increment(_Rb_tree_node_base* __x); const _Rb_tree_node_base* _Rb_tree_increment(const _Rb_tree_node_base* __x); _Rb_tree_node_base* _Rb_tree_decrement(_Rb_tree_node_base* __x); const _Rb_tree_node_base* _Rb_tree_decrement(const _Rb_tree_node_base* __x); template struct _Rb_tree_iterator { typedef _Tp value_type; typedef _Tp& reference; typedef _Tp* pointer; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Base_ptr _Base_ptr; typedef _Rb_tree_node<_Tp>* _Link_type; _Rb_tree_iterator() : _M_node() { } explicit _Rb_tree_iterator(_Link_type __x) : _M_node(__x) { } reference operator*() const { return static_cast<_Link_type>(_M_node)->_M_value_field; } pointer operator->() const { return &static_cast<_Link_type>(_M_node)->_M_value_field; } _Self& operator++() { _M_node = _Rb_tree_increment(_M_node); return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _Rb_tree_increment(_M_node); return __tmp; } _Self& operator--() { _M_node = _Rb_tree_decrement(_M_node); return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _Rb_tree_decrement(_M_node); return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Base_ptr _M_node; }; template struct _Rb_tree_const_iterator { typedef _Tp value_type; typedef const _Tp& reference; typedef const _Tp* pointer; typedef _Rb_tree_iterator<_Tp> iterator; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_const_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Const_Base_ptr _Base_ptr; typedef const _Rb_tree_node<_Tp>* _Link_type; _Rb_tree_const_iterator() : _M_node() { } explicit _Rb_tree_const_iterator(_Link_type __x) : _M_node(__x) { } _Rb_tree_const_iterator(const iterator& __it) : _M_node(__it._M_node) { } reference operator*() const { return static_cast<_Link_type>(_M_node)->_M_value_field; } pointer operator->() const { return &static_cast<_Link_type>(_M_node)->_M_value_field; } _Self& operator++() { _M_node = _Rb_tree_increment(_M_node); return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _Rb_tree_increment(_M_node); return __tmp; } _Self& operator--() { _M_node = _Rb_tree_decrement(_M_node); return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _Rb_tree_decrement(_M_node); return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Base_ptr _M_node; }; template inline bool operator==(const _Rb_tree_iterator<_Val>& __x, const _Rb_tree_const_iterator<_Val>& __y) { return __x._M_node == __y._M_node; } template inline bool operator!=(const _Rb_tree_iterator<_Val>& __x, const _Rb_tree_const_iterator<_Val>& __y) { return __x._M_node != __y._M_node; } void _Rb_tree_insert_and_rebalance(const bool __insert_left, _Rb_tree_node_base* __x, _Rb_tree_node_base* __p, _Rb_tree_node_base& __header); _Rb_tree_node_base* _Rb_tree_rebalance_for_erase(_Rb_tree_node_base* const __z, _Rb_tree_node_base& __header); template > class _Rb_tree { typedef typename _Alloc::template rebind<_Rb_tree_node<_Val> >::other _Node_allocator; protected: typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; public: typedef _Key key_type; typedef _Val value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef _Rb_tree_node<_Val>* _Link_type; typedef const _Rb_tree_node<_Val>* _Const_Link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; _Node_allocator& _M_get_Node_allocator() { return *static_cast<_Node_allocator*>(&this->_M_impl); } const _Node_allocator& _M_get_Node_allocator() const { return *static_cast(&this->_M_impl); } allocator_type get_allocator() const { return allocator_type(_M_get_Node_allocator()); } protected: _Link_type _M_get_node() { return _M_impl._Node_allocator::allocate(1); } void _M_put_node(_Link_type __p) { _M_impl._Node_allocator::deallocate(__p, 1); } _Link_type _M_create_node(const value_type& __x) { _Link_type __tmp = _M_get_node(); try { get_allocator().construct(&__tmp->_M_value_field, __x); } catch(...) { _M_put_node(__tmp); __throw_exception_again; } return __tmp; } _Link_type _M_clone_node(_Const_Link_type __x) { _Link_type __tmp = _M_create_node(__x->_M_value_field); __tmp->_M_color = __x->_M_color; __tmp->_M_left = 0; __tmp->_M_right = 0; return __tmp; } void _M_destroy_node(_Link_type __p) { get_allocator().destroy(&__p->_M_value_field); _M_put_node(__p); } protected: template struct _Rb_tree_impl : public _Node_allocator { _Key_compare _M_key_compare; _Rb_tree_node_base _M_header; size_type _M_node_count; // Keeps track of size of tree. _Rb_tree_impl() : _Node_allocator(), _M_key_compare(), _M_header(), _M_node_count(0) { _M_initialize(); } _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a) : _Node_allocator(__a), _M_key_compare(__comp), _M_header(), _M_node_count(0) { _M_initialize(); } private: void _M_initialize() { this->_M_header._M_color = _S_red; this->_M_header._M_parent = 0; this->_M_header._M_left = &this->_M_header; this->_M_header._M_right = &this->_M_header; } }; _Rb_tree_impl<_Compare> _M_impl; protected: _Base_ptr& _M_root() { return this->_M_impl._M_header._M_parent; } _Const_Base_ptr _M_root() const { return this->_M_impl._M_header._M_parent; } _Base_ptr& _M_leftmost() { return this->_M_impl._M_header._M_left; } _Const_Base_ptr _M_leftmost() const { return this->_M_impl._M_header._M_left; } _Base_ptr& _M_rightmost() *'+','-'.'/'0'1'2'3'4'5'6'7'8'9':';'<'='>'?'@'A'B'C'D'E'F'G'H' { return this->_M_impl._M_header._M_right; } _Const_Base_ptr _M_rightmost() const { return this->_M_impl._M_header._M_right; } _Link_type _M_begin() { return static_cast<_Link_type>(this->_M_impl._M_header._M_parent); } _Const_Link_type _M_begin() const { return static_cast<_Const_Link_type> (this->_M_impl._M_header._M_parent); } _Link_type _M_end() { return static_cast<_Link_type>(&this->_M_impl._M_header); } _Const_Link_type _M_end() const { return static_cast<_Const_Link_type>(&this->_M_impl._M_header); } static const_reference _S_value(_Const_Link_type __x) { return __x->_M_value_field; } static const _Key& _S_key(_Const_Link_type __x) { return _KeyOfValue()(_S_value(__x)); } static _Link_type _S_left(_Base_ptr __x) { return static_cast<_Link_type>(__x->_M_left); } static _Const_Link_type _S_left(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x->_M_left); } static _Link_type _S_right(_Base_ptr __x) { return static_cast<_Link_type>(__x->_M_right); } static _Const_Link_type _S_right(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x->_M_right); } static const_reference _S_value(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x)->_M_value_field; } static const _Key& _S_key(_Const_Base_ptr __x) { return _KeyOfValue()(_S_value(__x)); } static _Base_ptr _S_minimum(_Base_ptr __x) { return _Rb_tree_node_base::_S_minimum(__x); } static _Const_Base_ptr _S_minimum(_Const_Base_ptr __x) { return _Rb_tree_node_base::_S_minimum(__x); } static _Base_ptr _S_maximum(_Base_ptr __x) { return _Rb_tree_node_base::_S_maximum(__x); } static _Const_Base_ptr _S_maximum(_Const_Base_ptr __x) { return _Rb_tree_node_base::_S_maximum(__x); } public: typedef _Rb_tree_iterator iterator; typedef _Rb_tree_const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; private: iterator _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __y, const value_type& __v); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 233. Insertion hints in associative containers. iterator _M_insert_lower(_Base_ptr __x, _Base_ptr __y, const value_type& __v); iterator _M_insert_equal_lower(const value_type& __x); _Link_type _M_copy(_Const_Link_type __x, _Link_type __p); void _M_erase(_Link_type __x); iterator _M_lower_bound(_Link_type __x, _Link_type __y, const _Key& __k); const_iterator _M_lower_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const; iterator _M_upper_bound(_Link_type __x, _Link_type __y, const _Key& __k); const_iterator _M_upper_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const; public: // allocation/deallocation _Rb_tree() { } _Rb_tree(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_impl(__comp, __a) { } _Rb_tree(const _Rb_tree& __x) : _M_impl(__x._M_impl._M_key_compare, __x._M_get_Node_allocator()) { if (__x._M_root() != 0) { _M_root() = _M_copy(__x._M_begin(), _M_end()); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_impl._M_node_count = __x._M_impl._M_node_count; } } #ifdef __GXX_EXPERIMENTAL_CXX0X__ _Rb_tree(_Rb_tree&& __x); #endif ~_Rb_tree() { _M_erase(_M_begin()); } _Rb_tree& operator=(const _Rb_tree& __x); // Accessors. _Compare key_comp() const { return _M_impl._M_key_compare; } iterator begin() { return iterator(static_cast<_Link_type> (this->_M_impl._M_header._M_left)); } const_iterator begin() const { return const_iterator(static_cast<_Const_Link_type> (this->_M_impl._M_header._M_left)); } iterator end() { return iterator(static_cast<_Link_type>(&this->_M_impl._M_header)); } const_iterator end() const { return const_iterator(static_cast<_Const_Link_type> (&this->_M_impl._M_header)); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return _M_impl._M_node_count == 0; } size_type size() const { return _M_impl._M_node_count; } size_type max_size() const { return get_allocator().max_size(); } void #ifdef __GXX_EXPERIMENTAL_CXX0X__ swap(_Rb_tree&& __t); #else swap(_Rb_tree& __t); #endif // Insert/erase. pair _M_insert_unique(const value_type& __x); iterator _M_insert_equal(const value_type& __x); iterator _M_insert_unique_(const_iterator __position, const value_type& __x); iterator _M_insert_equal_(const_iterator __position, const value_type& __x); template void _M_insert_unique(_InputIterator __first, _InputIterator __last); template void _M_insert_equal(_InputIterator __first, _InputIterator __last); void erase(iterator __position); void erase(const_iterator __position); size_type erase(const key_type& __x); void erase(iterator __first, iterator __last); void erase(const_iterator __first, const_iterator __last); void erase(const key_type* __first, const key_type* __last); void clear() { _M_erase(_M_begin()); _M_leftmost() = _M_end(); _M_root() = 0; _M_rightmost() = _M_end(); _M_impl._M_node_count = 0; } // Set operations. iterator find(const key_type& __k); const_iterator find(const key_type& __k) const; size_type count(const key_type& __k) const; iterator lower_bound(const key_type& __k) { return _M_lower_bound(_M_begin(), _M_end(), __k); } const_iterator lower_bound(const key_type& __k) const { return _M_lower_bound(_M_begin(), _M_end(), __k); } iterator upper_bound(const key_type& __k) { return _M_upper_bound(_M_begin(), _M_end(), __k); } const_iterator upper_bound(const key_type& __k) const { return _M_upper_bound(_M_begin(), _M_end(), __k); } pair equal_range(const key_type& __k); pair equal_range(const key_type& __k) const; // Debugging. bool __rb_verify() const; }; template inline bool operator==(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return __x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin()); } template inline bool operator<(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template inline bool operator!=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__x < __y); } template inline void swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { __x.swap(__y); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ template _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _Rb_tree(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&& __x) : _M_impl(__x._M_impl._M_key_compare, __x._M_get_Node_allocator()) { if (__x._M_root() != 0) { _M_root() = __x._M_root(); _M_leftmost() = __x._M_leftmost(); _M_rightmost() = __x._M_rightmost(); _M_root()->_M_parent = _M_end(); __x._M_root() = 0; __x._M_leftmost() = __x._M_end(); __x._M_rightmost() = __x._M_end(); this->_M_impl._M_node_count = __x._M_impl._M_node_count; __x._M_impl._M_node_count = 0; } } #endif template _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: operator=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x) { if (this != &__x) { // Note that _Key may be a constant type. clear(); _M_impl._M_key_compare = __x._M_impl._M_key_compare; if (__x._M_root() != 0) { _M_root() = _M_copy(__x._M_begin(), _M_end()); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_impl._M_node_count = __x._M_impl._M_node_count; } } return *this; } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __p, const _Val& __v) { bool __insert_left = (__x != 0 || __p == _M_end() || _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__p))); _Link_type __z = _M_create_node(__v); _Rb_tree_insert_and_rebalance(__insert_left, __z, const_cast<_Base_ptr>(__p), this->_M_impl._M_header); ++_M_impl._M_node_count; return iterator(__z); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_lower(_Base_ptr __x, _Base_ptr __p, const _Val& __v) { bool __insert_left = (__x != 0 || __p == _M_end() || !_M_impl._M_key_compare(_S_key(__p), _KeyOfValue()(__v))); _Link_type __z = _M_create_node(__v); _Rb_tree_insert_and_rebalance(__insert_left, __z, __p, this->_M_impl._M_header); ++_M_impl._M_node_count; return iterator(__z); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal_lower(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { __y = __x; __x = !_M_impl._M_key_compare(_S_key(__x), _KeyOfValue()(__v)) ? _S_left(__x) : _S_right(__x); } return _M_insert_lower(__x, __y, __v); } template typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>:: _M_copy(_Const_Link_type __x, _Link_type __p) { // Structural copy. __x and __p must be non-null. _Link_type __top = _M_clone_node(__x); __top->_M_parent = __p; try { if (__x->_M_right) __top->_M_right = _M_copy(_S_right(__x), __top); __p = __top; __x = _S_left(__x); while (__x != 0) { _Link_type __y = _M_clone_node(__x); __p->_M_left = __y; __y->_M_parent = __p; if (__x->_M_right) __y->_M_right = _M_copy(_S_right(__x), __y); __p = __y; __x = _S_left(__x); } } catch(...) { _M_erase(__top); __throw_exception_again; } return __top; } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_erase(_Link_type __x) { // Erase without rebalancing. while (__x != 0) { _M_erase(_S_right(__x)); _Link_type __y = _S_left(__x); _M_destroy_node(__x); __x = __y; } } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_lower_bound(_Link_type __x, _Link_type __y, const _Key& __k) { while (__x != 0) if (!_M_impl._M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_lower_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const { while (__x != 0) if (!_M_impl._M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_upper_bound(_Link_type __x, _Link_type __y, const _Key& __k) { while (__x != 0) if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_upper_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const { while (__x != 0) if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } template pair::iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { if (_M_impl._M_key_compare(_S_key(__x), __k)) __x = _S_right(__x); else if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else { _Link_type __xu(__x), __yu(__y); __y = __x, __x = _S_left(__x); __xu = _S_right(__xu); return pair(_M_lower_bound(__x, __y, __k), _M_upper_bound(__xu, __yu, __k)); } } return pair(iterator(__y), iterator(__y)); } template pair::const_iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) const { _Const_Link_type __x = _M_begin(); _Const_Link_type __y = _M_end(); while (__x != 0) { if (_M_impl._M_key_compare(_S_key(__x), __k)) __x = _S_right(__x); else if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else { _Const_Link_type __xu(__x), __yu(__y); __y = __x, __x = _S_left(__x); __xu = _S_right(__xu); return pair(_M_lower_bound(__x, __y, __k), _M_upper_bound(__xu, __yu, __k)); } } return pair(const_iterator(__y), const_iterator(__y)); } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: #ifdef __GXX_EXPERIMENTAL_CXX0X__ swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&& __t) #else swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __t) #endif { if (_M_root() == 0) { if (__t._M_root() != 0) { _M_root() = __t._M_root(); _M_leftmost() = __t._M_leftmost(); _M_rightmost() = __t._M_rightmost(); _M_root()->_M_parent = _M_end(); __t._M_root() = 0; __t._M_leftmost() = __t._M_end(); __t._M_rightmost() = __t._M_end(); } } else if (__t._M_root() == 0) { __t._M_root() = _M_root(); __t._M_leftmost() = _M_leftmost(); __t._M_rightmost() = _M_rightmost(); __t._M_root()->_M_parent = __t._M_end(); _M_root() = 0; _M_leftmost() = _M_end(); _M_rightmost() = _M_end(); } else { std::swap(_M_root(),__t._M_root()); std::swap(_M_leftmost(),__t._M_leftmost()); std::swap(_M_rightmost(),__t._M_rightmost()); _M_root()->_M_parent = _M_end(); __t._M_root()->_M_parent = __t._M_end(); } // No need to swap header's color as it does not change. std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count); std::swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 431. Swapping containers with unequal allocators. std::__alloc_swap<_Node_allocator>:: _S_do_it(_M_get_Node_allocator(), __t._M_get_Node_allocator()); } template pair::iterator, bool> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_unique(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) { if (__j == begin()) return pair(_M_insert_(__x, __y, __v), true); else --__j; } if (_M_impl._M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair(_M_insert_(__x, __y, __v), true); return pair(__j, false); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { __y = __x; __x = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert_(__x, __y, __v); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_unique_(const_iterator __position, const _Val& __v) { // end() if (__position._M_node == _M_end()) { if (size() > 0 && _M_impl._M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v))) return _M_insert_(0, _M_rightmost(), __v); else return _M_insert_unique(__v).first; } else if (_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) { // First, try before... const_iterator __before = __position; if (__position._M_node == _M_leftmost()) // begin() return _M_insert_(_M_leftmost(), _M_leftmost(), __v); else if (_M_impl._M_key_compare(_S_key((--__before)._M_node), _KeyOfValue()(__v))) { if (_S_right(__before._M_node) == 0) return _M_inser